Asymptotics of Wigner functions at high frequency and near caustics
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ABSTRACT

Eigenfunction expansions of time-dependent Wigner functions are employed to motivate asymptotic expan-
sions at high frequencies and near space-time caustics for the semiclassical Schrodinger equation with simple
polynomial potentials and WKB initial data.

1 Schrdédinger equation

Consider the semiclassical Schrodinger equation
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with oscillatory (WKB) initial data
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Hypotheses for the potential :
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2 Phase space reformulation

Wigner function in phase space [Wigner, 1932]
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Wigner equation for the evolution of TW*

LWe (2, k,t) + LW (2,k,t) =0, (2, k) € Rt >0
We (2, k, t)|i=0 = W5 (2, k) = We§](x, k)
e oo S 2 (23+1) (1) §(2i+1)
L= ka% - V/(‘T)% -2 €% (3) ' V(2j+1)(! : gk;ﬁl
Remark: For e — 0 quantum L10uV111e operator £L°, formally reduces to the corresponding stationary classical

Liouville operator £, = k —V'(z)Z 4, corresponding to the Hamiltonian H (z, k) = k?/2 + V (z).

4.2 Near solutions of classical Liouville equation

Observe that
LE=L,— i52-76j(x, %) — L, ,ase—0,
j=1
where 5 3
L.= k% -V (z)% (classical Liouville operator)
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Then, for small ¢, a natural expansion which respects the evolution of the Lagrangian manifold has the form
W (k) ~ WE(a b, t) + Y e 250 (2, k, 1)
=1
where
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and
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Remark 4.3: See [Steinruck, 1990] for non-oscillatory initial data t§(x), and [Pulvirenti, 2006] for oscillatory
1§ (x) using asymptotics of W (z, k) in terms of Dirac functions.

3 Eigenfunction expansion of the Wigner function

W¢ admits of the eigenfunction expansion
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are the Wigner transforms of Schrédinger eigenfunctions (Moyal eigenfunctions; [Moyal, 1949])
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Remark 3.1: ¢, (z, k) are defined by the system of both eigenvalue equations

L0, (2, k) = Z(BE — B)®5 (2, )
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Remark 3.2: Employing asymptotics of Schrodinger eigenfunctions u;, about the eigenfunctions of the corre-
sponding harmonic oscillator (potential Vy (z) = 2%/2) [Simon, 1983], we derive formal asymptotic expansions
of the Moyal eigenfunctions

O (2, ) ~ WS (2 k) + Y 2 250 (2, k)
=1
where

o (2, k) = WE[YR, or, ) (2, k) 5

{5 (x)} n=o,1,... being the eigenfunctions of the corresponding harmonic oscillator.

4 Asymptotics of the Wigner functions

4.1 Near Wigner functions of the harmonic oscillator

The eigenfunction expansion of W*(z, k,t) and the asymptotic approximation of @, (x, k), lead to the ansatz:

W (2, k, t) ~ Wi, b, t) + > 72250 (2, k1)
=1

where W§ (X, K, t) and 2= (X, K, t) (X = K= ) are solutions of
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where
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DO(X, K, t) = —Bi(X, J)Wi (XK. t) — S04
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Remark 4.1: Then initial value problem for W§,, involving classical Liouville operator 9/0t 4+ Ly can be
integrated applying the method of characteristics.

Important observation 4.2: Such an expansion, valid for small times, is not appropriate near caustics, since Ly
fails, in general, to produce the correct Lagrangian manifold due to linearization of Hamiltonian flow.

5 Caustics
For simple Gaussian-Fresnel initial wave function
22 .2
i) =TT
the initial Wigner function is Gaussian in phase space

1 2 22
W (x, k) = ﬁe e 2

5.1 Harmonic Oscillator ( Vg (z) = 12—2). Focal points

Bicharacteristics (g, p, t) = g cos(t) + psin(¢), k(g,p,t) = pcos(t) — gsin(t)

Focal points: (z,,t,) = (0,vmr — §), v =1,2,...

. Harmonic Oscillator Wigner function  Harmonic Oscillator Wigner function
Caustic & Rays (t=3m/4) (=200)

Amplitude computed approximately: [¢°(x,t)[* = [, W (x, k,t)dk ~ [ W§ (x, k, t)dk

At the focal points: [¢°(z = 0,t = t,)] ~ 0(c~/?)

=%+ p%, p>0). Cusps

Caustic & Rays Wigner function (t=37 /4, p = 0.1) Wigner function (=200, jp = 0.1)

Approximate bicharacteristics via multiple scale asymptotics of the Hamiltonian system, for small ..

Cusp points: (z,,,t,) = (0,vm - §), v =1,2,...

Wigner function-Approximate
bicharacteristics (=200, pn = 0.1)

Lagrangian manifolds (t=200, p = 0.1)

[0 (z, )2 ~ [ WE (2, k, t)dk

At the cusp points: [1°(z = 0,t = t,)| ~ 0(~1/3)
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