
A family of Lagrangian manifolds can be locally parametrized by means of a phase func-
tion ϕ(x, ϑ, a) defined (locally) on X × Rk × A, with k ≤ n auxiliary variables (the
equivalent of a Morse family). If, the family is non-degenerate it defines a class of Fourier
integral distributions [18].

Idea: there exists a transform u 7→ Tfu = uf such that

u(x) =

∫
eiϕ(x,ϑ,a)uf (x, ϑ, a)dϑda ∈ D′(X),

where uf (x, ϑ, a) is a distribution that can be approximated by a sequence of symbols
with fiber-variables (ϑ, a). This reduces to the Fourier transform for X = A = Rn and
f (x, ξ) = ξ = a, i.e., free-particle momentum. Then, a suitable average of uf (x, ϑ, a)
should be related to the wave energy density on T ∗X .

The wave kinetic equation and Fourier integrals
The aim of this work is to give an alternative derivation of the wave kinetic equation which does not make use of neither the
Wigner-Weyl formalism [1] nor microlocal techniques [4], and resembles the theory of Fourier integrals [2, 3]. It is expected
that, in addition to establish a connection between the kinetic theory of waves and the Maslov-Hörmander theory, such an
approach can clarify some issues connected to the wave energy transport [1].

Outline. Let P be a semiclassical pseudo-differential operator in X ⊆ Rn of real principal type with a completely
integrable principal symbol p(x, ξ). This, in particular, means that there is a submersion

f : T ∗X → A ⊆ Rn, f (x, ξ) =
(
f1(x, ξ), . . . , fn(x, ξ)

)
, f1(x, ξ) = p(x, ξ),

with f1, . . . , fn in involution. Then, each “fiber” f−1(a), a ∈ A, is a Lagrangian submanifold of T ∗X ; more specifically,

graph(f ) ⊂ T ∗X × A,

defines a family of Lagrangian submanifolds in the sense of Melin and Sjöstrand [18].

Condition 1 The phases φ1, . . . , φm span (over the field of complex numbers) a
subspace Φ ⊂ C∞(Ω) approximately L0-coherent to order 2 on each submanifolds
Rµ. Moreover, if 〈g, φ〉 = 0 then g = 0, that is, the map Zm 3 g 7→ 〈g, φ〉 ∈ Φ is
injective.

Proposition 2 Let φ = (φ1, . . . , φm) satisfy condition 1, then for every µ the set

C̃ φ,2
µ = {g ∈ Zm \ {0} : ∂αs fl(t, x, 〈g, dφ〉) = 0, in Rµ, |α| ≤ 2},

is well-defined in Zm and non empty, where l is the label of the unique eigenvalue
corresponding to µ; equivalently the characteristic set

C φ,2
µ = {(t, x, g) ∈ Rµ × (Zm \ {0}) : ∂αs fl(t, x, 〈g, dφ〉) = 0, |α| ≤ 2},

is constant on Rµ, i.e., C φ,2
µ = Rµ × C̃ φ,2

µ . Furthermore, let us define

C̃ φ,2
l =

⋃
µ

C̃ φ,2
µ ,

with the union being over all µ corresponding to l,and, on recalling that R =
⋃
µRµ,

let us also define the operator

E2

( ∑
g∈Zm

Û(t, x, g)ei〈g,ζ〉
)

=
∑
g∈Zm

π
φ
2 (t, x, g) · Û(t, x, g) ei〈g,ζ〉,

acting on formal series, where

π
φ
2 (t, x, g) =


πl(t, x, 〈g, dφ〉), for g ∈ C̃ φ,2

l ,

I, for g 6∈ C̃ φ,2
l such that Im〈g, φ〉 6= 0 on R,

0, otherwise,

πl(t, x, τ, ξ) being the projector on the l-th eigenspace of A and I the identity matrix.
Then, if the eigenvectors el(t, x, 〈g, dφ〉) of the matrix A(t, x, 〈g, dφ〉) are bounded to-
gether with all their derivatives, the operator E2 is well defined : C∞(Ω×Cm+ ,CN ) →
C∞(Ω× Cm+ ,CN ).

Theorem 3 Let U ⊂ Ω be a neighbourhood of any point on R and let uε(t, x) be
the approximated solution given above with condition 1 satisfied. Then, there exists
an ε-bounded function S(ε, t, x, uε) together with an even integer ν ≥ 2 such that

|L(uε, ∂uε)| ≤ ε3/νS(ε, t, x, uε), uniformly in U . Here, ε-boundness means that

supU ε
|α||∂αS(ε, t, x, uε)| ≤ C uniformly for ε ∈ (0, ε0] and for any multi-index α.

An interesting outcome. The above sketched analysis has been put forward with
the aim of combining widely-applied approximate solutions [9-11] with the nonlinear
geometric optics [14, 15]; this, in particular, allows us to consider wave objects in a
form between that of wave beams and short pulses. In addition, by working out simple
analytically tractable cases we can see that the phenomenon of phase resonance [15] can
be destroyed by the localization of the wavefield: the new phase generated by resonance
can have a reference manifold not intersecting R and, thus, it give no contribution to
significant order.

First-order quasi-linear hyperbolic systems
with highly oscillating/localized data
We have considered systems of quasi-linear hyperbolic equations for the wave field u(t, x) ∈ CN ,

L(u, ∂u) = ∂u/∂t +

d∑
1

ai(t, x, u) · ∂u/∂xi + b(t, x, u) = 0, (t, x) ∈ Ω = (0, T )×X, X ⊆ Rd.

We search for approximate solutions in the form uε(t, x) = u0(t, x) + εU(t, x, φ(t, x)/ε), ε→ 0.

• The profile U(t, x, ζ) is defined for ζ ∈ Cm+ , C+ = R + iR+, by extending a 2π-periodic function U(t, x, ϑ) according
to (series are absolutely convergent)

U(t, x, ζ) =
∑
g∈Zm

Û(t, x, g)ei〈g,ζ〉, 〈g, ζ〉 =

m∑
µ=1

(
gµRe(ζµ) + i|gµ|Im(ζµ)

)
,

with Û(t, x, g) being the Fourier coefficients of U(t, x, ϑ) and we have set Û(t, x, 0) = 0, strictly oscillating profiles.

• The function φ ∈ C∞(Ω,Cm+ ) is the multi-valued complex phase with components φµ ∈ C∞(Ω,C+), µ = 1, . . . ,m.

Proposition 1 Let U(t, x, ζ) be any strictly oscillating profile and φ a multi-valued complex phase. Then, in any
compact set K ⊂ Ω where Im(φµ) = χµ > 0 for all µ, we have

|U(t, x, φ/ε)| ≤ Cnε
n, for every n ∈ N,

hence the oscillating wavefield is localized around R =
⋃
µRµ, with Rµ = χ−1

µ (0).

It is assumed that R amounts to a closed submanifold of (0, T )×X and it is called reference manifold.

Cauchy data at t = 0 are hε(x) = h0(x) + ε
∑
µHµ(x)eiφ

0
µ(x) + O(ε+∞), where each Hµ(x) is in an eigenspace of

A(t, x, τ, ξ) = τ +
∑
ai(t, x)ξi corresponding to the eigenvalue fl(t, x, τ, ξ): for each µ there is a corresponding l. We

require that the eigenspaces of A have constant multiplicity.

One finds that Rµ is the flow out of the initial set (Imφ0
µ)−1(0) along the characteristics of the Hamilton-Jacobi equation

fl(t, x, dϕ) = 0, ϕ(t, x) ∈ R. The complex phase φµ can be written as, “paraxial expansion”,

φµ(t, x) = φ0,µ(r) +
∑
i

siφi,µ(r) +
1

2

∑
ij

sisjφij,µ(r)

where (r, s) are the submanifold coordinates near a point on Rµ, with r coordinates on Rµ. For the profiles we gets

[
∂t +

d∑
1

ai(t, x, u0(t, x))∂xi

]
· U +

d∑
i=1

m∑
µ=1

[(
∂uai(t, x, u0)(U)∂xiϕµ(t, x)

)
+

(
∂ūai(t, x, u0)(Ū)∂xiϕµ

)]
· ∂ϑµU

+

d∑
1

[
∂uai(t, x, u0)(U) + ∂ūai(t, x, u0)(Ū)

]
· ∂xiu0 +

(
∂ubi(t, x, u0)(U) + ∂ūb(t, x, u0)(Ū)

)
= 0, ϕµ = Re(φµ).

along with the two constraints E2U(t, x, ϑ) = U(t, x, ϑ), and Û(t, x, 0) = 0 (where E2 is defined in proposition 2).

We now modify the notion of L0-coherent spaces [14]. Here, L0 = ∂t +
∑d

1 ai(t, x, u0(t, x))∂xi.

Definition 1 A linear subspace Φ ⊂ C∞(Ω) over C, is approximately L0-coherent to order k on the submanifold Rµ
if for every ψ ∈ Φ one of the following two statements holds. (i) For all (t, x) ∈ Rµ, dψ 6= 0 and ∂αs fl(t, x, dψ) = 0
for all α with |α| ≤ k. (ii) For all (t, x) ∈ Rµ, ∂

α
s fl(t, x, dψ) 6= 0 at least for one α with |α| ≤ k; this in particular

implies dψ 6= 0.
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Summary of the research activity
The Plasma Physics research group at the University of Pavia has acquired an expertise in asymptotic analysis
of wave equations in the high-frequency (semiclassical) limit, having in mind applications to magnetically
confined plasmas for thermonuclear fusion development. Here are some issues under consideration.

•Derivation of the wave kinetic equation for the Wigner distribution [1] and its connection to the theory of
Fourier integral distributions [2, 3] (see below) as well as to other type of phase space (microlocal) analysis
[4, 5] such as the FBI and Bargmann transforms [1, 5, 6]. Derivation of transport equations for the wave
energy density from the kinetic equation [7-9].

•High-frequency asymptotics of hyperbolic equations, both linear [9-12] and nonlinear [14, 15], with highly
oscillating and localized Cauchy data modelling collimated wave beams (see below).

• Evolution of the phase fronts in terms of a curvature flow (in preparation, with Grigory V. Pereverzev,
Max-Planck-Institut für Plasma Physics.)

•Application of pseudodifferential operators, their symbols and calculus, [16].

• Some work in classical electrodynamics [17].
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