
Simulation of the Rashba Effect in a
Multiband Quantum Structure

O. Morandi1 and L. Demeio2

1Dipartimento di Elettronica e Telecomunicazioni, Università degli Studi di Firenze,
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Via Brecce Bianche 1, I-60131 Ancona, Italy

Introduction

Devices containing asymmetric quantum wells where quantized states are spin-split
by the Rashba effect have been proposed. In this work we introduce a multiband
model derived within the Bloch-Wannier formalism, which gives a full description of
the coupling between the conduction and the valence band, including the effect of the
degenerate bands and the spin-orbit coupling. In particular, we present the six-band
version of our model and some numerical results related to an asymmetric resonant
interband tunneling diode.

Multiband envelope function model

We consider an electron of massm0 moving in a periodic potential VL and subject to an
additional external potential U which is treated as a perturbation. The Hamiltonian
which governs the motion of the electron is given by

H = H0 + U(r) − iζ (∇U(r) ∧∇) · σ
H0 = − ~

2

2m0
∇2 + VL(r) − iζ (∇VL(r) ∧∇) · σ,

where ζ = ~
2/(4m2

0c
2), and σ is a vector whose components are the Pauli spin matrices.

The evolution of the electron wave function Ψ(r, t) is determined by the Schrödinger
equation with the perturbed Hamiltonian H. The Bloch basis ψαn(k, σ, r) provides a
set of functions for the expansion of the wave function

Ψ(r, t) =
∑

n,α,σ

∫

B
ϕαn(k, σ)ψαn(k, σ, r, t) dk,

Here B indicates the first Brillouin zone, the index n denotes the bands and α runs
over the possible nα degenerate states related to the eigenvalue En. Finally, the index
σ labels the spin of the electron.
The aim of the “kp” approach is to separate the fast oscillating contributions to the
Hamiltonian, due to the periodic potential VL, from the slower contributions, due to
the external potential U . This is achieved by expanding the equation of motion with
respect to |k| and by taking the Fourier transform of the resulting system. To the first
order we obtain
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Six-band model

The symmetry properties of the crystal lattice considerably reduce the number of
independent parameters in the previous expressions. In particular, we consider the
six-band model, which includes the conduction and the light and heavy holes valence
bands.
By taking the y coordinate along the growth axis, we have ϕ(r) = ϕ(y)eik⊥·r, where
k⊥ is the transverse momentum, which is conserved. The equations for ϕ(y) are
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∂
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where with In×n we indicate the n× n unit matrix, and
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The other parameters are defined in the Table

Symbol Physical Meaning

mc Effective mass in conduction band
mlh, mhh Light and heavy holes effective masses
uα,σn Periodic part of Bloch function related to k = 0

λ = ζ
√

3
~
P + ~

m0

πK Interband coupling coefficient

πK = 3√
2
ez · π+,1/2

c,h Kane momentum
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Kane momentum without spin

Numerical results

Band alignments of the
InAs/AlSb/GaSb/AlSb/InAs double
barrier structure used in the simulation.
Transport through this system involves
resonant tunneling of electrons from the
InAs emitter, through unoccupied elec-
tron states in the subbands of the GaSb
well, and subsequently back into the con-
duction band of the collector.
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Calculated transmission coefficient for the resonant diode for the six band system.
The in-plane wave vector is k⊥ = 2π

a (0.03, 0, 0) where a is the lattice constant. The
resonant peak is related only to the spin-up conduction electrons, and it disappears
completely for the spin-down states. In this way, the device is able to select electrons
both from the energy and form the spin direction.

By using a Runge-Kutta scheme, we calculate the envelope function solution for incre-
mental values of the electron beam energy for both directions of the spin. The figures
show the electron density in the valence bands nv(y) =

∑

j=±1/2,±3/2 |ϕjh|2 and in the
conduction band nv(y) =

∑

j=± |ϕjc|2 for of spin up electron.
When the electron energy approaches the resonant level, charge cumulates in the va-
lence quantum well. On the other hand, no resonance effects are present for spin down
electron.


