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1. The problem

• The framework. We consider the Schrödinger equation

i ε ∂t ψ(x, t) =
(

1
2

(− i∇x − A(εx)
)2

+ VΓ(x) + φ(εx)
)
ψ(x, t)

=: Hεψ(x, t) (1)

for ψ ∈ L2(Rd), where VΓ is periodic with respect to some regular lat-

tice Γ ⊂ Rd, φ and A are external electric and magnetic potentials and

ε ¿ 1 expresses the slow space-variation of the potentials.

• Separation of space-scales. The separation of scales in the prob-

lem plays a fundamental role in the understanding of the dynamics.

Fig. 1: Separation of space-scales in the perturbed periodic problem.

• Semiclassical model. In solid state physics, the motion of semi-

classical wave packets is described by the dynamical system

ṙ = ∇En(κ) , κ̇ = −∇φ(r) + ṙ ×B(r) ,

where κ = k − A(r), r and k represent the position and the crystal-

momentum of the electron, and En(k) is the nth Bloch band.

• The goals.

1. to give a mathematical justification of the semiclassical model

2. to compute higher-order corrections in ε to the semiclassical model

¦ A full account of our results is given in arXiv:math-ph/0212041, to

appear in Comm. Math. Phys.

2. The mathematical setup

• The Zak transform allows to separate slow and fast degrees of

freedom,

(Uψ)(k, y) :=
∑

γ∈Γ

e−i(y+γ)·kψ(y + γ), (k, y) ∈ M ∗ × Td,

U : L2(Rd) → Hτ
∼= L2(M ∗)⊗ L2(Td) ,

where M ∗ is the first Brillouin zone. In the Zak representation the

periodic Hamiltonian is fibered over M ∗:

U (−1
2∆ + VΓ

) U−1 =
∫ ⊕
M ∗ dk Hper(k),

Hper(k) = 1
2

(− i∇y + k
)2

+ VΓ(y) , k ∈ M ∗.

• The Bloch bands.

Let En be an isolated not

degenerate Bloch band.

Choose a system of smooth

and periodic Bloch functions

{ϕn(k)}k∈M ∗,

Hper(k)ϕn(k) = En(k)ϕn(k).

Fig. 2: A schematic picture of

Bloch bands (for d ≥ 2). The

bands E1, E4 and E5 are isolated.
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3. The result

The electron acquires a k-dependent effective electric moment given by

the Berry connection

An(k) = i
〈
ϕn(k),∇ϕn(k)

〉
,

with curvature Ωn(k) = ∇×An(k), and an effective magnetic moment

given by the Rammal-Wilkinson term

M(k)n = i
2

〈∇ϕn(k), ×(Hper(k)− E(k))∇ϕn(k)
〉
.

The ε-corrected semiclassical equations reads

ṙ = ∇κ

(
En(κ)− εB(r) · Mn(κ)

)
− ε κ̇× Ωn(κ) ,

(2)

κ̇ = −∇r

(
φ(r)− εB(r) · Mn(κ)

)
+ ṙ ×B(r) .

The relation between (1) and the flow Φt
n,ε of (2) in the coordinates

(k, r) is given by the following theorem.

• Theorem. To any isolated Bloch band corresponds an orthog-

onal projector Πε
n defining an almost-invariant subspace, i.e.

[Hε, Πε
n] = O(ε∞). Moreover, let a ∈ C∞

b (R2d) be Γ∗-periodic in the

second argument, i.e. a(r, k + γ∗) = a(r, k) for all γ∗ ∈ Γ∗, and

â = a(εx,−i∇x) be its Weyl quantization. Then for each finite

time-interval I ⊂ R there is a constant C < ∞ such that for t ∈ I
∥∥∥∥ Πε

n

(
eiHεt/ε â e−iHεt/ε − ̂a ◦ Φt

n,ε

)
Πε

n

∥∥∥∥B(L2(Rd))
≤ ε2 C .

• Strategy of the proof. Apply space-adiabatic perturbation the-

ory [6] to the τ -equivariant unbounded-operator valued symbol

H0(k, r) =
1

2
(−i∇y + k − A(r))2 + VΓ(y) + φ(r)

whose Weyl quantization H0(k, iε∇k) equals UHεU∗ acting on Hτ .

• Generalizations. Arbitrary dimension d ∈ N, degenerate bands,

families of Bloch bands.

. . .

1. J. C. Guillot, J. Ralston and E. Trubowitz. Semi-classical asymptotics in solid state physics, Commun. Math. Phys. 116, 401–415 (1988).
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