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Abstract

We consider the power series expansion in ~ of the time evolved BBGKY hierarchy of the Wigner
functions for a system of N identical quantum particles under the action of a mean-field potential.
The problem is to prove that each term of such an expansion converges to the corresponding term
of the expansion of the solution of the infinite hierarchy associated with the Hartree equation.

Acknowledgements. The present note describes a research project I am devel-
oping in collaboration with Mario Pulvirenti1.

Consider a system of N identical quantum particles of unit mass interacting through
a mean-field potential:

U(XN) =
1

N

N∑
i<j

ϕ (xi − xj) , (1)

where XN = {x1, . . . , xN} and x1, . . . , xN are the positions of the N particles. We
know (see [1]) that, under the assumptions that the two-body interaction ϕ is suffi-
ciently smooth and the initial wave function is factorized, in the limit N → ∞ each
particle evolves according to the following nonlinear Schroedinger equation of the
Hartree type: (

iε∂t +
ε2

2
∆− ϕ ∗ ρ

)
ψ(t) = 0, (2)

where
ρ(x, t) = |ψ(x, t)|2. (3)

For our convenience we denoted with ε the parameter ~; in fact we are going to
consider a sort of semiclassical limit and so, in order to refer to ~ as a small parameter,

1Dipartimento di Matematica, Università di Roma ”La Sapienza”, Italy.
E-mail:pulvirenti@mat.uniroma1.it

1



we call it ε, but it’s only matter of notation.
Further results concerning the Coulomb interaction (see [2] and [3]). have also been
proved.
In all these results, however, the convergence is strongly dependent on ε. More
precisely, the estimates which ensure the convergence fail if ε goes to zero. On the
other hand (see [4] and [5]), one can prove that the simultaneous limit, N → ∞,
ε → 0 arbitrarily, recover the classical Vlasov equation.
Therefore one expects that the derivation of the Hartree equation (for ε fixed) should
hold uniformly in ε. For an attempt in this direction see [6].
Now we approach the problem in a different way. We would like to consider the limit
N →∞ by analyzing the term by term convergence of the semiclassical expansion of
Wigner functions presented in [7].
The Wigner-Liouville equation for the system under consideration is

(∂t + VN ¦∇XN
) WN = TNWN , (4)

where VN = {v1, . . . , vN} and v1, . . . , vN are the velocities of the N particles. Clearly
WN is the Wigner function associated to the system under consideration and the
operator TN acts as follows:

(TNWN) (XN , VN) = i

∫ + 1
2

− 1
2

dλ

∫
dKN Û (KN) eiKN ¦XN KN ¦∇VN

WN (XN , VN + ελKN) ,

(5)
where Û (KN) is the Fourier transform of the potential in (1), KN = {k1, . . . , kN}
and k1, . . . , kN are the momenta of the N particles. We consider a factorized initial
state, namely at time t = 0 we have:

WN (XN , VN , 0) = W0 (XN , VN) =
(
f⊗N

0

)
(XN , VN) (6)

where f0 is a one particle probability density, it’s sufficiently smooth and it doesn’t
depend on ε. This choice is not particularly meaningful but thanks to it computations
will be simpler. Now we observe that

KN ¦∇VN
WN (XN , VN + ελKN) =

1

ε

d

dλ
WN (XN , VN + ελKN) =

=
d

dµ
WN (XN , VN + µKN) , (7)
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where µ = ελ. So we can write the Taylor expansion around the point µ = 0 of (7)
obtaining:

d

dµ
WN (XN , VN + µKN) =

d

dµ
WN (XN , VN + µKN) |µ=0 +

+ µ
d2

dµ2
WN (XN , VN + µKN) |µ=0 +

+
µ2

2

d3

dµ3
WN (XN , VN + µKN) |µ=0 + o

(
µ3

)
,

(8)

that is

d

dµ
WN (XN , VN + µKN) = KN ¦∇VN

WN (XN , VN) +

+ µ (KN ¦∇VN
)2 WN (XN , VN) +

+
µ2

2
(KN ¦∇VN

)3 WN (XN , VN) + o
(
µ3

)
.

(9)

For the sake of simplicity we analyse the expansion up to the second order in µ, or
in ε, but we will see that in this way we are able to understand also the structure of
higher order terms.
Therefore, putting the expression (9) in (5), we find the following expansion for the
operator TN :

TN = T
(0)
N + εT

(1)
N + ε2T

(2)
N + o

(
ε3

)
, (10)

where
(
T

(0)
N WN

)
(XN , VN) =

= i

(∫ + 1
2
ε

− 1
2
ε

dµ

ε

)∫
dKN Û (KN) eiKN ¦XN KN ¦∇VN

WN (XN , VN) =

= i

∫
dKN Û (KN) eiKN ¦XN KN ¦∇VN

WN (XN , VN) =

=

(∫
dKN (iKN) Û (KN) eiKN ¦XN

)
∇VN

WN (XN , VN) =

= ∇XN
U (XN) ¦∇VN

WN (XN , VN) , (11)
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(
T

(1)
N WN

)
(XN , VN) =

=
i

ε

(∫ + 1
2
ε

− 1
2
ε

µ
dµ

ε

) ∫
dKN Û (KN) eiKN ¦XN (KN ¦∇VN

)2 WN (XN , VN) =

= 0, (12)

(
T

(2)
N WN

)
(XN , VN) =

=
i

ε2

(∫ + 1
2
ε

− 1
2
ε

µ2

2

dµ

ε

)∫
dKN Û (KN) eiKN ¦XN (KN ¦∇VN

)3 WN (XN , VN) =

= − 1

24

∫
dKN (−i)

N∑
j1,j2,j3=1

kj1kj2kj3Û (KN) eiKN ¦XN ¦ ∂

∂vj1

∂

∂vj2

∂

∂vj3

WN (XN , VN) =

= − 1

24

∫
dKN (−i)

∑

α:|α|=3

Kα
N Û (KN) eiKN ¦XN Dα

VN
WN (XN , VN) =

= − 1

24

1

N

N∑

` 6=m

∑

α:|α|=3

Dα
x`xm

ϕ(x` − xm)Dα
v`vm

WN (XN , VN) . (13)

We can see that T
(0)
N is nothing else than the Liouville operator, just as we expected

from the classical mean-field theory, whereas T
(1)
N is vanishing because of the integral

in µ and we can easily conclude that

T
(2k+1)
N = 0, k = 0, 1, 2, . . . (14)

Let us consider the semiclassical expansion of Wigner function, namely:

WN = W
(0)
N + εW

(1)
N + ε2W

(2)
N + o

(
ε3

)
. (15)

Therefore, inserting (15) and (10) in equation (4), we find:

∂t

(
W

(0)
N + εW

(1)
N + ε2W

(2)
N + o

(
ε3

))
+

+ VN ¦∇XN

(
W

(0)
N + εW

(1)
N + ε2W

(2)
N + o

(
ε3

))
=

=
(
T

(0)
N + ε2T

(2)
N + o

(
ε3

))(
W

(0)
N + εW

(1)
N + ε2W

(2)
N + o

(
ε3

))
.

(16)
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So we obtain the equation at order zero:

∂tW
(0)
N + VN ¦∇XN

W
(0)
N = T

(0)
N W

(0)
N , (17)

that is the Liouville equation with

W
(0)
N (XN , VN , 0) = W0 (XN , VN) =

(
f⊗N

0

)
(XN , VN) . (18)

Clearly we have that

W
(0)
N (XN , VN , t) = W0 (XN(t), VN(t)) , (19)

where XN(t) and VN(t) are the solutions of the hamiltonian system associated with
the dinamic generated by the potential in (1).

Also the equation at order one is the Liouville equation because
(
T

(1)
N W

(0)
N

)
= 0, but

now the initial datum is
W

(1)
N (XN , VN , 0) = 0, (20)

so that we have
W

(1)
N (XN , VN , t) ≡ 0. (21)

At second order we have again a Liouville equation with zero initial datum but so-
lution is not trivial because there is a source term which we know from the previous
step:

∂tW
(2)
N + VN ¦∇XN

W
(2)
N = T

(0)
N W

(2)
N + T

(2)
N W

(0)
N . (22)

Then we are able to compute W
(2)
N using classical Liouville flux S (t), namely:

W
(2)
N (XN , VN , t) =

∫ t

0

dτS(t− τ)T
(2)
N W

(0)
N (XN , VN , τ). (23)

Now look at the equation at third order in ε, that is:

∂tW
(3)
N + VN ¦∇XN

W
(3)
N = T

(0)
N W

(3)
N + T

(1)
N W

(2)
N + T

(2)
N W

(1)
N , (24)

or
∂tW

(3)
N + VN ¦∇XN

W
(3)
N = T

(0)
N W

(3)
N , (25)

with the following initial condition

W
(3)
N (XN , VN , 0) ≡ 0. (26)

Clearly we have:
W

(3)
N (XN , VN , t) ≡ 0. (27)
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So by the calculation that we have done we are able to conclude that, because of the
particular choice of an initial datum which doesn’t depend on ε, all the odd terms of
the expansion of WN are equal to zero. In fact they are solutions of Liouville equations
with zero initial conditions. On the contrary the even terms of the expansion are not
zero and we are able to compute them because they are solutions of the Liouville
equations with source terms that we know from the previous steps. For example look
at the equation for the fourth order term:

∂tW
(4)
N + VN ¦∇XN

W
(4)
N = T

(0)
N W

(4)
N + T

(1)
N W

(3)
N + T

(2)
N W

(2)
N + T

(3)
N W

(1)
N , (28)

or
∂tW

(4)
N + VN ¦∇XN

W
(4)
N = T

(0)
N W

(4)
N + T

(2)
N W

(2)
N , (29)

with zero initial condition. Therefore we have:

W
(4)
N (XN , VN , t) =

∫ t

0

dτS(t− τ)T
(2)
N W

(2)
N (XN , VN , τ), (30)

where S(t) is Liouville flux and we know W
(2)
N from (23).

We analyze now more carefully the equation for W
(2)
N :

∂tW
(2)
N + VN ¦∇XN

W
(2)
N = T

(0)
N W

(2)
N + T

(2)
N W

(0)
N . (31)

As usual, in order to perform the limit N → ∞, we have to trace the equation with
respect to the last N − j variables (j = 1, 2, . . . , N) and then we obtain a hierarchy

of N equations for the marginals W
(2)
N,j. Let uj be a smooth test function such that

uj = uj (Xj, Vj) and let make use of the standard notation:

< uj,WN > =

∫
dXNdVNuj (Xj, Vj) WN (XN , VN , t) =

=

∫
dXjdVjuj (Xj, Vj)

∫
dXN−jdVN−jWN (XN , VN , t) =

=

∫
dXjdVjuj (Xj, Vj) WN,j (Xj, Vj, t) . (32)

Then from a simple computation we obtain:

∂t < uj,W
(2)
N,j > + < uj, Vj ¦∇Xj

W
(2)
N,j >=< uj, T

(0)
N W

(2)
N,j > + < uj, T

(2)
N W

(0)
N,j > .

(33)
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Now look at the term < uj, T
(2)
N W

(0)
N,j >:

< uj, T
(2)
N W

(0)
N,j > =

1

24

1

N

∫
dXN

∫
dVN

N∑

` 6=m

∑

α:|α|=3

Dα
v`vm

uj (Xj, Vj) ¦

¦ Dα
x`xm

ϕ(x` − xm)W
(0)
N (XN , VN , t) =

=
1

24

1

N

∫
dXj

∫
dVj

j∑

` 6=m

∑

α:|α|=3

Dα
v`vm

uj (Xj, Vj) ¦

¦ Dα
x`xm

ϕ(x` − xm)W
(0)
N,j (Xj, Vj, t) +

+
1

24

N − j

N

∫
dXj+1

∫
dVj+1

j∑

`=1

∑

α:|α|=3

Dα
v`

uj (Xj, Vj) ¦

¦ Dα
x`

ϕ(x` − xj+1)W
(0)
N,j+1 (Xj+1, Vj+1, t) .

(34)

The first term in the r.h.s of equation (34) is expected to be O
(

j2

N

)
hence vanishing

in the limit. In regard to the second term, we expect that

< uj, T
(2)
N W

(0)
N,j >

N→∞−→ 1

24

∫
dXj+1

∫
dVj+1

j∑

`=1

∑

α:|α|=3

Dα
v`

uj (Xj, Vj) ¦

¦ Dα
x`

ϕ(x` − xj+1)f
⊗j+1 (Xj+1, Vj+1, t) ,

(35)

where f(x, v, t) solves the Vlasov equation with initial datum f0. Here we are using
the classical mean-field theory (see [8], [9], [10], [11]).
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Now we analyze the term < uj, T
(0)
N W

(2)
N,j >:

< uj, T
(0)
N W

(2)
N,j > = − 1

N

∫
dXN

∫
dVN

N∑

` 6=m

∇v`
uj (Xj, Vj) ¦

¦ ∇x`
ϕ(x` − xm)W

(2)
N (XN , VN , t) =

= − 1

N

∫
dXj

∫
dVj

j∑

` 6=m

∇v`
uj (Xj, Vj) ¦

¦ ∇x`
ϕ(x` − xm)W

(2)
N,j (Xj, Vj, t) +

−N − j

N

∫
dXj+1

∫
dVj+1

j∑

`=1

∇v`
uj (Xj, Vj) ¦

¦ ∇x`
ϕ(x` − xj+1)W

(2)
N,j+1 (Xj+1, Vj+1, t) .

(36)

Supposing that the first term in the r.h.s. of (36) is O
(

j2

N

)
and that

W
(2)
N,j+1 ⇀ f

(2)
j+1, when N →∞, (37)

for some function f
(2)
j+1, we would have:

< uj, T
(0)
N W

(2)
N,j >

N→∞−→ −
∫

dXj+1

∫
dVj+1

j∑

`=1

∇v`
uj (Xj, Vj) ¦

¦ ∇x`
ϕ(x` − xj+1)f

(2)
j+1 (Xj+1, Vj+1, t) .

(38)

Let us remember now that in equation (33) we have also the terms:

∂t < uj,W
(2)
N,j > and < uj, Vj ¦∇Xj

W
(2)
N,j > . (39)

With respect to them we are able to affirm that they converge respectively to:

∂t < uj, f
(2)
j > and < uj, Vj ¦∇Xj

f
(2)
j >, (40)
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under the assumption (37).
In conclusion we obtained formally the following infinite hierarchy:

∂t < uj, f
(2)
j > + < uj, Vj ¦∇Xj

f
(2)
j >=

= − 1

24

∫
dXj

∫
dVj uj (Xj, Vj) ¦

¦
∫

dxj+1

∫
dvj+1

j∑

`=1

∑

α:|α|=3

Dα
x`

ϕ(x` − xj+1)D
α
v`

f⊗j+1 (Xj+1, Vj+1, t) +

+

∫
dXj

∫
dVj uj (Xj, Vj) ¦

¦
∫

dxj+1

∫
dvj+1

j∑

`=1

∇x`
ϕ(x` − xj+1)∇v`

f
(2)
j+1 (Xj+1, Vj+1, t) .

(41)

Now we want to check that (41) is exactly what we expect from the well known re-
sult about quantum mean-field limit (see [1]): the hierarchy corresponding to the the
second term of the expansion in powers of ε of the solution of the infinite hierarchy
associated with the Hartree equation.
First of all we write the Wigner-Liouville equation associated with the Hartree equa-
tion (2), namely:

(∂t + v ¦∇x) f = Tf, (42)

where f(x, v) is such that:

|ψ(x)|2 = ρ(x) =

∫
dv f(x, v) (43)

and the operator T acts as follows:

(Tf) (x, v) = i

∫ + 1
2

− 1
2

dλ

∫
dkϕ̂ ∗ ρ(k)eikx (k ¦∇v) f(x, v + ελk) =

= i

∫ + 1
2

− 1
2

dλ

∫
dkϕ̂(k)ρ̂(k)eikx (k ¦∇v) f(x, v + ελk), (44)

where, as previously, we denoted with ĝ the Fourier transform of a function g. We
define:

fj (Xj, Vj) =
(
f⊗j

)
(Xj, Vj) , (45)
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where f is the solution of equation (42) with initial data given by f0.
Through a standard computation we obtain the following equations (one for each
value of j):

(
∂t + Vj ¦∇Xj

)
fj =

j∑

`=1

T`fj, with j = 1, 2, . . . (46)

where we denoted with the symbol T` the operator T acting on `-variable, namely:

(T`fj) (Xj, Vj) = i

∫ + 1
2

− 1
2

dλ

∫
dkϕ̂ ∗ ρ(k)eikx` (k ¦∇v`

) fj (Xj, V`−1, v` + ελk, Vj−`) =

= i

∫ + 1
2

− 1
2

dλ

∫
dkϕ̂(k)ρ̂(k)eikx` (k ¦∇v`

) f (x`, v` + ελk)

j∏

r 6=`

f(xr, vr) =

= i

∫ + 1
2

− 1
2

dλ

∫
dkϕ̂(k)ρ̂(k)eikx` (k ¦∇v`

) fj (Xj, V`−1, v` + ελk, Vj−`) .

(47)

Clearly for each of the equations of (46) we have the following factorized initial data:

fj (Xj, Vj, 0) = f 0 (Xj, Vj) = f⊗j
0 (Xj, Vj) . (48)

Now, using Taylor expansion as in the case of N particles interacting through a mean-
field potential, we obtain the following expansion in power series of ε of the operator
T`:

T` = T
(0)
` + εT

(1)
` + ε2T

(2)
` + o(ε3), (49)

where

(
T

(0)
` fj

)
(Xj, Vj) = i

∫
dkϕ̂(k)ρ̂(k)eikx` (k ¦∇v`

) fj (Xj, Vj) =

=

∫
dk (ikϕ̂ (k)) ρ̂(k)eikx`∇v`

fj (Xj, Vj) =

= (∇x`
ϕ ∗ ρ) (x`)∇v`

fj (Xj, Vj) . (50)

Let us observe that the last line of (50) is equal to:

∫
dxj+1

∫
dvj+1∇x`

ϕ (x` − xj+1) eikx`−xj+1∇v`
fj+1 (Xj+1, Vj+1) .

(51)
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Therefore T
(0)
` acts on function of j +1 particles. So that from now on we will denote

the zero order term of the expansion of the operator T` with C
(0)
`,j+1.

For the first order term of the expansion we have that
(
T

(1)
` fj

)
(Xj, Vj) ≡ 0, (52)

and it’s easy to conclude that we have also:

T
(2k+1)
` ≡ 0 with k = 1, 2, . . . (53)

On the contrary the second term of the expansion of T` in power series of ε is not
zero and we have:
(
T

(2)
` fj

)
(Xj, Vj) =

i

24

∫
dkϕ̂(k)ρ̂(k)eikx` (k ¦∇v`

)3 fj (Xj, Vj) =

= − 1

24

j∑

`=1

∑

α:|α|=3

∫
dxj+1

∫
dvj+1D

α
x`

ϕ (x` − xj+1) Dα
v`

fj+1 (Xj+1.Vj+1) .

(54)

We can see that also T
(2)
` , as T

(0)
` , acts on function of j + 1 particles and then from

now on we will denote the second order term of the expansion of T` with C
(2)
`,j+1.

Therefore we have that the equations in (46) form a hierarchy of equations which we
will call Hartree hierarchy.
Supposing that we have the following expansion for the solution of the Hartree
hierarchy:

fj = f
(0)
j + εf

(1)
j + ε2f

(2)
j + o(ε3), (55)

we can write the equations at each order in ε. At order zero we obtain:

(
∂t + Vj ¦∇Xj

)
f

(0)
j =

j∑

`=1

C
(0)
`,j+1f

(0)
j+1, (56)

with
f

(0)
j (Xj, Vj, 0) = f⊗j

0 . (57)

This is nothing else than the hierarchy associated to the Vlasov equation as we
expected from classical mean-field theory. At second order we obtain:

(
∂t + Vj ¦∇Xj

)
f

(2)
j (Xj, Vj) =

j∑

`=1

(
C

(0)
`,j+1f

(2)
j+1 + C

(2)
`,j+1f

(0)
j+1

)
, (58)
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with zero initial condition. Let us remember how the operators C
(0)
`,j+1 and C

(2)
`,j+1 act

respectively on f
(2)
j+1 and f

(0)
j+1:

(
C

(0)
`,j+1f

(2)
j+1

)
(Xj, Vj) =

∫
dxj+1

∫
dvj+1∇x`

ϕ (x` − xj+1) eikx`−xj+1∇v`
f

(2)
j+1 (Xj+1, Vj+1) ,

(59)
and

(
C

(0)
`,j+1f

(2)
j+1

)
(Xj, Vj) == − 1

24

j∑

`=1

∑

α:|α|=3

∫
dxj+1

∫
dvj+1D

α
x`

ϕ (x` − xj+1) Dα
v`

f
(0)
j+1 (Xj+1.Vj+1) .

(60)
Observing (59) and (60), we can conclude that we obtained at second order in ε the
equations we expected from the formal limit that we discussed previously (cfr. (41)).
The hope is to prove rigorously the previous convergence we established at a formal
level only.
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