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Definition (TBC)

Consider a given whole-space initial value problem (IVP) on R™
and ) C R", T = 9€). We are interested in the solution of the IVP
on (). Therefore we need new artificial boundary conditions on I'.
We call these artificial BC transparent, if the solution of the IVBP
on () corresponds to the whole-space solution of the IVP restricted

on ().

TRANSPARENT BOUNDARY CONDITIONS (IN GENERAL)



ANALYTICAL TBC FOR THE SCHRODINGER EQUATION

IVP: time-dependent Schrodinger equation (here: 1D)

ihgw(xt) = —h2 a—2—|—V(act) Y(x,t) reR, t>0
ot "’ N 2m* Ox2 ’ Y ’

W(z,0) = ¢'(z) € L*(R)

on a domain of interest 2 = {x € R|0 < x < X }.
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ANALYTICAL TBC FOR THE SCHRODINGER EQUATION

IVP: time-dependent Schrodinger equation (here: 1D)

ih%zﬁ(x,t) = ( I 8—2 + V(x,t)) Y(x,t), xR, t>0

" 2m* Ox2
W(z,0) = ¢'(z) € L*(R)

on a domain of interest 2 = {x € R|0 < z < X }.

Assumptions:
e supp ¢’ CQ
e potential V(.,t) € L*°(R), V(«,.) is piecewise continuous

e V constant on R\(2 (here: V(x,t) =0forz < 0and V(x,t) = Vx for
x> X)

Goal:
Calculate the solution ¥ (x,t) € C on Q with TBC at x = 0 and z = X.

ANALYTICAL TBC FOR THE SCHRODINGER EQUATION
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6, /Q\\ 6,
x e G: x € G
R 72
1hpy = — Sy VYza + V(z, 1) 1y = — Sy VYze + V(z, 1)
d(x,0) =3’ (2) v(z,0) = 0
Y2 (0,t) = (Toy)(0,1) v(X,t)=®(t) t>0, 0)=0
Va(X,1) = (Tx) (X, 1) lim v(a,1) =0
vz(0,8) = (Tx ®)(¢)

DERIVATION OF TBC



Laplace-transformation on the exterior domains

Vpa (T, 8) + 2”7? (S + %)@(a&*, s) = 0 x> X
9(X,s) = ®(s)
lim 9(x,s) = 0
0:(X,8) = (Tx®)(s)
_ %nﬁ WX ) z—X) »
solution: o(x,s) = (s+7)¢ X)<I>(s)

N (Tx®)(s) = e T 15 &Ci)(s)

With the inverse Laplace-Transformation follows the analytical TBC

t .VixT
h i i Yxy d ¢<X,T)€1 h
X X,t —_— — 4 h 0 d .
Ya (X, 1) orm* ¢ © dt Jr—t
0

[J. S. Papadakis (1982)]

DERIVATION OF TBC



Application of DTBC for the Schrddinger equation:

e Simulation of quantum transistors in quantum waveguides (with
inhomogeneous DTBC for the 2D Schrodinger equation)

e Analyse steady states and transient behaviour

y
Vcontrol
Y
l-lJ inc
- Q
0
0 X X
Y
l_IJI G - - .
y Vcontrol
- - LIJ pw
0 Q
0 X X

DERIVATION OF TBC



e Discretization of the analytic TBCs with an numerical
approximation of the convolution integral [e.g. B. Mayfield
(1989)]

=- only conditionally stable, not transparent!

FORMER STRATEGIES:



e Discretization of the analytic TBCs with an numerical
approximation of the convolution integral [e.g. B. Mayfield
(1989)]

=- only conditionally stable, not transparent!

e Create a buffer zone O of the length d with a complex potential
V(X) =W —iA around the computational domain €2 with
Dirichlet 0-BC at 00 and absorbing boundary conditions on 9f?2
[e.g. L. Burgnies (1997)]

© Q ©
Ll":O | | | | l-lJ:O

= unconditionally stable, unphysical reflections at the
boundary, huge numerical costs

FORMER STRATEGIES: 8-A



e Family of absorbing BCs (also for the non-linear Schrodinger
equation, wave equation)

[J. Szeftel (2005)]

e discretize the whole space problem with an unconditionally stable
scheme (e.g. Crank-Nicolson finite difference scheme) and calculate
new discrete transparent boundary conditions for the full discretized
Schrodinger equation

DTBC: dx=0.00625, dt=2e-05, t=0.014

0.9

[A. Arnold, M. Ehrhardt (since 1995)]

SUCCESSFUL STRATEGIES



Discretize 2D Schrédinger equation:

e Crank-Nicolson scheme intime, t, = nAt,n € N, H:= —1A+V
Hamilton-Operator, 2 = [0, X] x [0, Y]

(1 + iHZAt> Y(x,y, t+ At) = (1 — 1H2At> Y(x,y,t)

N (axz ) P )+ )
=g" 2 (2,y) (" (2,) + 9" (@ y)) + WY (s,

e compact 9-point scheme in space, x; = jAz, yr = kAy with
jEZ0<k<K

e DITBCatxg=0and zy = X = JAzxz with J € Z

e -BCaty=0andy =Y = KAy with K € N

Y)

DERIVATION OF DISCRETE TRB

10



9-point discretization scheme:

'Y
(+1,k+1)

@ L3
(.k) (+1.,k)

(Di + D, +

X

with

gy
Df 47y,
D3 47,

2
Dy ¢?k

Az? + Ay2 D2 D2)¢n+% ® ® ®

7k

2
Ay Dz) [ n+2¢n+2 _ 21D2—¢2k}

12 7 12

|
S (W7k + i)
YIEt =0,
’ ’ > (0
At 0 ' F
VI g g — 200 i .
’ ’ ’ Z
ACEQ Y ] E
Vi1 — 207, + U7 i
’ R keN
Ay? ’ <

DERIVATION OF DISCRETE TRB
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Discrete Sine-Transformation in y-direction:

1 — mkm
Vim = K;w?,kﬁn(?) m=20,..., K

Motivation:
Solve discrete stationary Schrddinger equation in 1D:

Aerjmk mX;iLka ]{:O,,K
X;?O:XZLK:O-

The eigenfunctions x7, = sin (Z&2) provide the energies
m 1 ™M
= (e (7))

Hence follows form = 0,..., K

n n - 1 wm “n
~ T2Ay 2@”’ L 2%’”%’”1)”1 EVNT: (1_C°S<7)> j.m:

DERIVATION OF DISCRETE TRB
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Sine-Transformation of the discrete Schrodinger equation on the
exterior domains j < 0, 5 > J yields for the modes m =0, ..., K:

A

m n+1 m n+1 m Tn+1
Ciii¥iiim + O 1 + Ry

=D -Ch )V + (D= C )Y, + (B — R )YY,,.

DERIVATION OF DISCRETE TRB 13



Sine-Transformation of the discrete Schrodinger equation on the
exterior domains j < 0, 5 > J yields for the modes m =0, ..., K:

m n+1 m n+1 m Tn+1
Ciii¥iiim + O 1 + Ry

=D -Ch )V + (D= C )Y, + (B — R )YY,,.

Definition [Z - Transformation |
The Z-Transformation of a sequence ("), cn IS given by

Z{Y"=0(z) =Y YPra" zeC, |z > 1.
n=0

DERIVATION OF DISCRETE TRB 13-A



One can show:
o Z(Ppfl) = =20+ 20 (2)
* ¢9—|—1,k — 1709—1,16 — ¢9,k =0 for k= 07 st 7K
e V;constantforj<1,j>J—-1=C"=C™, Rj"=R™, B =B™

Rz+R—-B
Cz4+C—-D

= Urii1(z) + { ] Ui(z)+V¥y_1(2z)=0.

DERIVATION OF DISCRETE TRB
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One can show:
o Z (1#”“) = —zlﬁg’,m + 207" (2)

e Yy =V5 1, =¢7,=0fork=0,...,K
e V;constantforj<1,j>J—-1=C"=C™, Rj"=R™, B =B™

Rz+R—-B
Cz4+C—-D

= Urii1(z) + { ] Ui(z)+V¥y_1(2z)=0.

This difference equation with constant coefficients is solved by
U,(z) =17 (2):

2 (2) + [Rz+R—B] ,

Cz+C—-D
Physical background forces decay of the solution for j — oo

= |v(z)|>1 und v(z)¥;(z) =V, _1(2) — Z-transformed DTBC

DERIVATION OF DISCRETE TRB 14-A



Theorem [ DTBC for the 2D Schrodinger equation  ]: Discretize
the 2D Schrodinger-Equation with the compact 9-point difference
scheme in space and with the Crank-Nicolson scheme in time.
Thenthe DTBC atx; = JAz and xo = 0 forn > 1 read

&?,m_so)wOm — Z o V)¢Om_a1¢1m7

n—1

f 0) 7 _ (n v) 7

¢9_1,m _ SJ,m?vb;rfl,m - Z me aJ 1¢J 1,m-
vr=1

The convolution coefficients s( ") can be calculated by

S _ o (A7)

Sim = Qj m [Pn(/{;n) — Pn—2(M;n)}

with the Legendre-Polynomials P, ( P_1 = P_5 = 0).

DERIVATION OF DISCRETE TRB 15



Advantages of the new DTBC
e Nno numerical reflections
e 3-point recursion for s

e these DTBC have exactly the same structure like the DTBC
calculated with the 5-point scheme [A. Arnold, M. Ehrhardt]

e convergence: O(Az* + Ay* 4+ At?)
e same numerical effort like discretized analytical TRB
o 5" = 0On3/?)

e CN-FD scheme with DTBC is unconditionally stable, with
A=T+42D2 4 Al—y;Dg follows:

Dfllwllizo with  [[¢|[% = (v, A). (1)

DERIVATION OF DISCRETE TRB



some drawbacks
e DTBC are non-local in time
— high memory costs: the solution ¢? . has to be saved in

xo and x; for all time stepsn =1,2,...

— Ineachtime stepn =1,2,... you have to calculate K
convolutions of the length n
(FFT not useable, = O(Kn?))

DERIVATION OF DISCRETE TRB
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some drawbacks
e DTBC are non-local in time
— high memory costs: the solution ¢? . has to be saved in

xo and x; for all time stepsn =1,2,...

— Ineachtime stepn =1,2,... you have to calculate K
convolutions of the length n
(FFT not useable, = O(Kn?))

e These DTBC are given in the Sine-transformed form: BC of
one mode is a linear combination of all other boundary points

— diagonal structure of the system matrix is destroyed

DERIVATION OF DISCRETE TRB 17-A
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20

301

40t

50

60

701

80

90F

100

Sparsity pattern of the system matrix for J = K = 10

DERIVATION OF DISCRETE TRB
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Example 1:

free 2D Schrddinger equation on 2 = [0, 2] x [0, 2] with the initial

data:
ik, x+ik y—60( e—1) 4 (y—1 2)
v (z,y) =e ’ (2=3)"+(v-3) o (m,y) €Q
. @“‘ . | f - /

0 40

60 80 100 100
120

T = 10 T = 60A¢ T = 80A¢t

DERIVATION OF DISCRETE TRB



e |ldea: Approximate the convolution coefficients sgnn),b by a sum of
exponentials:

L
s aEM =N "bhg ", neN,|g|>1,L<40
=1

APPROXIMATION OF DTBC
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e |ldea: Approximate the convolution coefficients sgnn),b by a sum of
exponentials:

L
s aEM =N "bhg ", neN,|g|>1,L<40
=1

e b, q; are calculated by the Padé - Approximation of

2L—-1

fla)=Y s™Ma" x|l <1

n=0

[A.Arnold, M. Ehrhardt, |. Sofronov (2003)]

APPROXIMATION OF DTBC 20-A



Recursion formula for the convolution coefficients:

n—1 L
St =3
t=0 =1
with
cl(o) = 0

APPROXIMATION OF DTBC
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Recursion formula for the convolution coefficients:

n—1 L
>y =3 el
t=0 =1
with
™ = gl Vb ", m=1,...,N
cl(o) = 0
Advantages:

[ If you have calculated b;, g; once for a set Ax, Ay, At, V, you'll easily
derive b7, ¢; for any Az™, Ay™, At*, V" by

* L QZaf_E
qQ = @ — qib

. ad — bb 1+q;
b = b _

l = ab)(qa—b) 1+a

0 Numerical effort: O(Kn?) — O(KLn)
0 Memory: O(Kn) — O(KL)

APPROXIMATION OF DTBC 21-A



Example 2 :
free 2D Schrodinger-Equation in 2 = [0, 1] x [0, 1]
Initial function:

! (z,y) = sin(ry)e™= " 02)" (2 ) e

1T=150 1T=300

L=5: T=150At T = 300At

=10 T =300

L=20: T =150At T = 300At

T = 500At

T = 500At

APPROXIMATION OF DTBC
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A

y < 1
32nm Veontrol 40.5nm

i - 20nm — J

Y

l_lJinc N B T
— T 20nm
0
0 X j(

e Incoming wave at z = 0:

—iEt

W0, y,t) = sin(ry)e + , E =29.9meV

e inhomogeneous DTBC atx =0,DTBCatx = X

SIMULATION OF QUANTUM WAVEGUIDES 23



Little trick to suppress oscillations in time:
; . i —iEt . .
Y*"¢ oscillates like e ™% in time.

FE Dbig:
[ fast oscillation of the solution in time
[J small time step size is necessary
[ high numerical effort for the analysis of steady state and long-time

behaviour
Define
iwt : E
o(x,y,t) = e “Y(x,y,t) mit w= —7-
¢ solve the modified Schrddinger equation
hQ
thpe = — Y (Pzz + Oyy) "‘SV - WhZSO

Vo

=V

SIMULATION OF QUANTUM WAVEGUIDES 24



0.04 -

0.035

0.03|

0.025

0.02

0.015

0.01f

0.005 -

!
\

|

i

T
v=0 []
v=-E

oo

Il Il Il Il Il
5 6 7 8 9 10
t[10712 g

le (ZE, Y, t) - wTef(xa Y, t)HQ
||¢2(3§‘,y,t> o ¢T€f<x7 y7t>||2

11 is calculated with V' = 0, ¢, with V = —FE and ), is a numerical

reference solution, which has been calculated with high accuracy.

SIMULATION OF QUANTUM WAVEGUIDES
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Initial function: X=1, Y=0.86667, dx=0.016667, dy=0.016667, dt=0.0002, V=0

Ipsi(xy)l, t=0

Quantenwellen.m, solution after T = 0.0202 ps, it = 10100

3
25
24
£
3 154
=
0.5 4'
0k ﬁﬂl;ﬂllll""zf“‘\\\\‘\‘\‘\‘\\“\\ o
0 = llllll’llll/ﬂfg‘\\\ .

0.6

y [nm]

T = 10100At

1wyl

1wy, DI

Quantenwellen.m, solution after T = ~1.7998 ps, it = 1000

% R
OSSN

7/ W W

GRS

y [nm]

T = 1000At

Quantenwellen.m, solution after T = 0.0802 ps, it = 10400

y [nm]

T = 10400At

Quantenwellen.m, solution after T = ~0.1998 ps, it = 9000

W0yl
A
!

y [nm]

T = 9000At

Quantenwellen.m, solution after T = 1.9002 ps, it = 19500

1wy, DI

y [nm]

T = 19500At

SIMULATION OF QUANTUM WAVEGUIDES
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Drawbacks of the simulations:

e Hard walls (zero Dirichlet BCs) and edges are not practicable in
industry!
—  Geometry of computational domain shall be realized by

potentials also in the simulations.

—  How to choose the incoming wave and the initial function then?

e Potentials are NOT constant in the exterior domains!
—  Decoupling of the modes for V (x, y) # const. after Sine-

Transformation is not possible

EXTENSION OF THE DTBC TO MORE ARBITRARY POTENTIALS 27
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Discrete Schrodinger equation:
5-point scheme in space, Crank-Nicolson in time:

h2 n—|—%

[1 Calculate new Eigenfunctions, which take the potential into account!

n—{—%

(D2 + D)yl + V),

ihDy W} = —

EXTENSION OF THE DTBC TO MORE ARBITRARY POTENTIALS 27-A



Solve the eigenvalue equation on the exterior domains (4 <0,5>J):
1 " " " ntl . .
ToA? (XFk—1,m — 2XGkm + Xkt1,m) + Vi 2 XGkeom = EfmX5km
with K
Ay X Geml’ =1 and X3.0,m = X 5,m =0
k=0

for0 <k m<K,n>O0.

Transformation w.r.t. the eigenfunctions

K—-1
k=1
yields
. + In hQ 2 n+3 n Stz
lth wj,m — _2m* Dm j,mg + Ej,m j,m2

[1 same structure as the sine-transformed Schrédinger equation!
[N. Ben Abdallah, M.S. (2005)]

EXTENSION OF THE DTBC TO MORE ARBITRARY POTENTIALS
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Example 3: 2D channel

Potential V/(0.y) Eigenfunction x for j=0, [x ik m|2 of the m = 1! mode with the Eigenvalue A = 65.3211
110 T T 1 T T T
100 b 0.9r
90 0.8
80
0.7
701
0.6
=~ 60 J o
£
S <05
> 50F b =
0.4
401
0.3r
301
20 i 0.2r
10 +H 0.1f
0 . . . . 0 . . . . . . . . .
0 10 20 30 40 50 0 10 20 30 40 50 60 70 80 90 100
Yk Yk

potential V' (y) = 400y(1 — y) eigenfunction x of m =1

[1 initial function:

I ikzjAz_ 0
Vi =¢€ Jkm

[1 incoming wave:

inc __ ikgpjAx_0 iE,nAt with E. — COS(k 33)

Lk, — € X’,k,me r —
J J Az

EXTENSION OF THE DTBC TO MORE ARBITRARY POTENTIALS
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Solve the Schrodinger equation (in polar coordinates)

i)y = —% (%(rwr)r -+ r%@b@@) +V(r,0,t)y, r>00<60<2mt>0

on a circular domain 2 = [0, R] x [0, 27| with TBC at z = R.

Problems:

e solve a second order difference equation with varying coefficients:
a;Wrt1(2) +b;(2)¥Ws(2) +¢;Vy-1(z) =0

e calculation of the convolution coefficients for the DTBC
—  "recursion from infinity"

e singularityatr =0 —  not equidistant offset-grid 7; = Tyl

e approximation of the convolution coefficients and the -sum

[A.Arnold, M. Ehrhardt, M. S., I. Sofronov (2006)]

SCHRODINGER EQUATION ON CIRCULAR DOMAINS
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Example 4:

free Schrodinger equation on unit disc €21 = [0, 1] x [0, 27]

2tky T cos 0+2tky T sin 6 —
e

Lr, 0) =
ol 0) = e

iniialfunction on @, = [0,1]x(0,2r], Ar = 1/128, 4 = 2n/128

Solution on @, = [0,1}x{0,2r at time t= 0.125, At = &r = /128, 80 = 2n/126

1W(r.8,0)

»
T
S
=

(r cos 9)2 __ (rsin 9)2
200 2ay

solution on 0, = [0, 1}«[0,2n] attime t= 0.25, At = Ar = 1/128, 80 = 211/128

10,01

initial function

T = 0.125

initial function on @, = [0,1]x[0,2r, Ar = 1/128, 4 = 211/128 solution on @, =[0,1][0,2r] at time t= 0.125, At = Ar = 1/128, A8 = 21/128

05

T = 0.25

solution on @, = [0,1)x[0,2r] at time t= 0.25, At = Ar = 1/128, 48 = 21 /128

SCHRODINGER EQUATION ON CIRCULAR DOMAINS
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Error due to the scheme/TBC:

_ Hw(rja ‘97% tn) — 90(?“3', Qk:,

tn)HQ,2

L(¢7 907 tn? Q) :

1. numerical solution

lo(rs, Ok, tn)lle2.2

©: exact solution or numerical reference solution

relative L2 error due to the scheme

relative L?~error due to the TBC

10° ¢ 10%%
— J=K=64, At=1/64
— — —J=K=128, At=1/128
— - — J=K=256, At=1/256 107 L
107
10—12 L
10_2 | 10—13 L , e
-
o,
/
10
-3 /
10 "
~. _ JpnE J=K=64, At=1/64
Tl — — —J=K=128, At=1/128
— - — J=K=256, At=1/256
10’4 L L L L L L L L L ) 10’16 L L L L L L L L L )
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

t

t
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