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Thanks:
=

fThe results which I will present today are obtained in
collaboration with A. Farina and A. Fasano (Dipartimento di
Matematica, Universita degli Studi di Firenze, Italy).

Detailed proofs are in

A. Farina, A. Fasano, A. MikeliC : On the equations governing the
flow of mechanically incompressible, but thermally expansible, viscous
fluids, to appear in M3AS : Math. Models Methods Appl. Sci., Vol. 18, no.
6 (2008).
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Introduction

-

In this talk, I'll present the study of the system

@

div 7 =
p(V)

VY, pd)=1-—ad (1)

o(9)(5V)F = —Ar 98, — VP + Rie Div {24(9) D(#)}

=V (u(9) div ) @
p(9)e1 (9)TV = — div (AW)V), Q)

Pe

o -
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Introduction

-

In this talk, I'll present the study of the system

@

div 7 =
p(V)

VY, pd)=1-—ad (4)

o(9)(5V)F = —Ar 98, — VP + Rie Div {24(9) D(#)}

=V (u(9) div ) ©
p(9)e1 (9)TV = — div (AW)V), ©)

Pe

In a cylindrical domain
QO ={r < R(x3,¢) <1} x|0,27] x (0,1)
in R®. R:[0,1] x [0,27] — (0, 1] is a C>°-map. J
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-

The boundary of Q2 contains 3 distinct parts: the lateral
boundary I';,; = {r = R(x3, ¢}, the inlet boundary

I'in ={zs=1and r < R(1,¢), ¢ € [0,2x]} and the outlet
boundary 'y, = {xz3=0and r < R(0,¢), ¢ € [0,27]}. a >0
IS a parameter (the "expansivity ").

=

o -
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. .

he boundary of (2 contains 3 distinct parts: the lateral
boundary I';,; = {r = R(x3, ¢}, the inlet boundary
I'in ={zs=1and r < R(1,¢), ¢ € [0,2x]} and the outlet
boundary 'y, = {xz3=0and r < R(0,¢), ¢ € [0,27]}. a >0
IS a parameter (the "expansivity ").
System (1)-(3) describes a dimensionless model for the
stationary motion of a mechanically incompressible, but
thermally expansible viscous fluid . It IS widely used in industrial
simulations of flows of hot melted glasses, polymers etc.

We’ll consider the system (10)-(12) in the realistic situation,
when the parameter o = —K (T, — 1) (the " expansivity " or
the "thermal expansion coefficient ”) is small.

o -
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Our plan is the following: T

o We prove that the system (1) — (3), with suitable
boundary conditions, has a solution.

# We establish unigueness of the solution for small data.

# We prove that, in the limit o — 0, our system reduces to
the Oberbeck-Boussinesq system. Furthermore, we
calculate the first correction term in this asymptotic limit.

We recall the Oberbeck-Boussinesq system:

div 798 =0 (7)
DvOFb OB - o , 1 OB\ 1/ ~OB
T —Ar V77 €; — Vpaor + . Div {2p(9%7)D(777) }

| ®
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: 1(1903)D§OB _ i d|V (A(??OB)V"&OB) (9)
b Dt Pe '

In the situation which is of interest for us, the quantities
from (??) are small but non-zero. Our goal is to study a
model which generalizes the Oberbeck-Boussinesq

approximation and reduces to it in the limit.

o -
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OB
cpl(ﬁOB)D L v (A(W9F)V9OPB). (13)

Dt Pe

In the situation which is of interest for us, the quantities
from (??) are small but non-zero. Our goal is to study a
model which generalizes the Oberbeck-Boussinesq
approximation and reduces to it in the limit.

NB: The full non-stationary system:

K Dv

v i = ——°F _ 1) =
div v = o 00) (T — 1) D (14)
N2V — 98, — V(P + ——p(9) div §) + — Div {2u(9) D(¥
p(0) oo = ~Ar 98, — V(P + 2= u(9) div 7) + ~ Div {24(9) D(
(15)
Dv | .
L p(9)ep1 (9)— = — div (A(F) V), (16)J

Dt Pe
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Existence for the stationary problem

=

Problem A . We consider the system (1) — (3) in €2, with the
boundary conditions

U = v1€y, U = on I, (17)
U = v9€y, U = on I',u: (18)
1
v =0, —P—eA(ﬁ)Vﬁ nm=q0+S on Iy, (19)
v1 € C5(Tin) N O™ (Tin), v2 € Cf(Tout) N C™(Tout),
SecC®Tat), S>0 (20)
/ p(1)vy rdrde = / (1 — a)vy rdrdgp = / vap(0) rdrde
Fz’n an Fout
(21)

o -
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We start by studying the energy equation for a given

W = pv € H(Q2), where

H(Q)={Zc L3(Q)?| divz=0inQ, Z-71 =

0 on Tye, Z-7lr,, = p(L)v1, Z-7lr,,, = p(0)va}.

Our nonlinearities c,; and A\ are defined only for ¥ such that
the density is not negative. We extend it on IR by setting

=

o -
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El
-

We start by studying the energy equation for a given
W = pv € H(Q2), where

HQ)={zc L}(Q)?| divZ=0in Q, 7-7 =

0 on Tye, Z-7lr,, = p(L)v1, Z-7lr,,, = p(0)va}.

Our nonlinearities c,; and A\ are defined only for ¥ such that

the density is not negative. We extend it on IR by setting

(9 cp1(1) /9% for 9 > 1
C — 0o 00 %)
pl (HSHL (Flat))ZCpl(_ HSHL (Flat)> for ?9 < — HSHL (Tyat)

=

go¥ qo qo ’

(24)

A(D) A(1) for ¥ > 1 e
T ALy gy < 1Sl (29)

o "’ -
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We will prove that 9 € [— HSHL;@M) ,1] Now for a given

w e H(Q), Se LT y), S>0
N, cp1 € WEH(IR), X > )\g and constants ¢y, Pe >0,
(26)
we consider the problem

o -
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We will prove that 9 € [— HSHL;@M) ,1] Now for a given

we H(), Se€ L>®([y), >0
N, cp1 € WEH(IR), X > )\g and constants ¢y, Pe >0,

(30)
we consider the problem
Problem ©: Find v € H1(Q) N L>(Q) such that
| .
Cp1 (N WVY = = div (A(9)V9), (31)
g=1onTl,,, and 9=0 on I,y (32)
1
—— ANV -i=qt+S on Iy (33)

- - -~
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Proposition 2 Under the stated assumptions, Problem © has
at least one variational solution in H!(2), satisfying the
estimate

q0 .
el VOl s + 10122, < Ao+ Bolldll iy, (34)

IS oo (r
B() — Hcpluoo max{ at } ,
qo

qo +4
A0 = RS, + 2B Dl +

1Al 3
L +2Pe)\0 ‘Q’ + §HIOHOO |’Cp1Hoo|’U1HL2(Fm). J
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Corollary 1 Under the assumptions of Proposition 2, we have
the following estimate

Pe 1 .
1910 < S { 3, L 00, Rl } (o + Bl ).

o Qo
(35)

Lemma 1 Any variational solution ¥ ¢ H'(Q) to Problem ©,
satisfying the a priori estimate (34), satisfies also

B HS”LOO(ant)
q0

<y <1 ae.on (2 (36)

o -
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Remark 4 Under the condition that the interior angle between

the lateral boundary r = R(z3,¢) € C*? and the upper and
lower surfaces is /2, we can apply the elliptic regularity.
This can be seen directly by extending the equation for
r3 > 1 and z3 < 0. Let /3(2) be the elliptic regularity

constant in estimating the 1W13(Q)— norm using elliptic
potentials, i.e. the solution 6 for the mixed problem

div(Vd—f)=0 in Q (37)
VO-i=¢g only,; and 6=0on 'y, ULy, (38)

IS estimated as

VBl < €3<ﬂ>{ugumat> | uﬂ\m(ms}. )
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hen we have
VI 13 < Eoo + Eorl|W 13(q), (40)

where

’Flat\l/g l3(12) Pe

Ego = " (”SHLOO(PM) +qomaX{1,

ISl zoe (1y0) }
qo

H ” (‘Q’1/3_|_€ ( )’Flat‘l/?))a

and

o -
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.

hen we have

IVO| L3 < Eoo + Eorllwllzs (o), (43)
where
By = !ant\l/sAzg(Q)Pe (”SHLOO(PMM%maX{L HSI!meat)}
’ do
H H (‘9’1/3+€( )’Flat‘l/?))’
and

Q 8 o0
Bor = 2 be e la max{l, 1511z mat)}. (45)

L A0 q0 J
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fNow we turn to the continuity and momentum equations,
determining the velocity field @ = pv’ and the pressure p.
Our system reads
For given ¢ determine {w, p} satisfying

dvaw=0 In (46)
LW 2 w
— = —A vV
(WV) ; rdey, — V(p+ — R di p)
L piv 2u)pL)) in o @7)
Re K P
i=0 on Iy, W= (1-a)vieg on I'y, and @ = vaé,; on [y,
(48)

o -
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-

fNow we turn to the continuity and momentum equations,
determining the velocity field @ = pv’ and the pressure p.
Our system reads
For given ¢ determine {w, p} satisfying

dvw=0 In € (49)
LW 2 w
— = —A vV
(WV) ; rdey, — V(p+ — R di p)
2 Div (2 (ﬁ)D(Q)) in Q (50)
Re K P
i=0 on Iy, W= (1-a)vieg on I'y, and @ = vaé,; on [y,
(51)

L Next, there exists J

Lecture at the CIME-EMS School "Mathematical models in the manufacturina of alass. polvmers and textiles” Montecatini Terme. ltalv. September 14. 2008 — p. 17/



E7
o .

Ce H2(0)®, V(e L3(Q)?, with curl ¢ satisfying (@8) (52)

Now we adapt the well-known Hopf construction to our
non-standard nonlinearities. we have

o -
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Ce H>(Q)3, v e L3(Q)?, with curl ¢ satisfying (48) (55)

Now we adapt the well-known Hopf construction to our
non-standard nonlinearities. we have

Proposition 2 Let us suppose that 1/p € L (),

1/p < 1/pmin. Then, for every v > 0 there is a £, depending
on ~ and p,in, Such that

e HY(N)?®, divé=0in Q, £=C on 99 and (56)
1 - o < . .

| S @V)0-Edrl <Al Vo€ Ho()  57)
LLet us introduce now some useful constants: J
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( 2 . 6 .
— Hmin , Ao = 4£, Boo = Mmm, Cor =2~ 61/6\915/6
8l 2
1 4 6L/0
Bopr =2 - 61/3—2 1€l Ls)s,  Boz = Mmgx
1 _)mz'n 2,LLma,x . Pmin

Coo = 2 + D .

\ 00 Do (|’£HL6(Q)3 Re H (5) ”L2(Q)9)

(58)

-
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( 2 i 6 -
v = Hmin C Agy =4 \2/_ . By = ,umm7 Cyp =2 - 61/6‘9’5/6
Pmax Re /Om’m Pmax /
1= Atz 61/°
y Bor=2-6"°——|&]lrs)p.  Boz = Mmgx
1 min 2,LL Pmin
Coo = 12 maz | D€ .
| Coo =" (€l s (s + ~ | ()l z2())
(61)
Theorem 1 Let us suppose that
1
AB = R_e(BOO — CYB()Q”V"&”L?;(Q)S) — OJB()lHVﬁHLz(Q)g > ()
(62)

Land Aget = A — 4400 V|| 12(2) (Coo + ArCon[[ VI £2(q) > 0
(63>J
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nen there is a solution @ ¢ H'(Q)? for the problem

N

6)-

/

3

| D (W) || 2(0p0 < [[D(E)]lr2)e +

E9

, satisfying the estimate

s Coo —|-AI’C()1HV29HL2(Q)3

=

Lecture at the CIME-EMS School "Mathematical models in the manufacturina of

alass

(64)

V Aalet

-
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Then there is a solution @ ¢ H'(Q)? for the problem

46)-(48), satisfying the estimate
~ S Coo + ArCo1 ||V r2¢q)3
| D(@) | 20y < D) 2(0pe + x— ©

Next we define our iterative procedure:

Let v = % and ¢ be the corresponding vector valued

function from Hopf’s construction.

For a given w™ = W™ + ¢, such that

W™ e Bp={Ze H {(Q)?: divz=0inQand
D(W™)| 12 < R}, we calculate 9", a solution to

L27-29. J
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-

fNext, with this 9™, we determine a solution
WMt = Wt ¢ for the problem (46)-(48), satisfying the

estimate (64).
The natural question arising in the iterative process is if

W™+l remainsin B ?
We have the following result

o -
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fNext, with this ¥, we determine a solution
= it 4 ¢ for the problem (46)-(48), satisfying the
estimate (64).
The natural question arising in the iterative process is if
W™+l remainsin B ?
We have the following result

Proposition 3 Let the constants Ay and By be given as Iin
Proposition 1 and let £y and Ey; be given by Lemma 2. Let
the constants By, Bo1, Bo2, Ao, Coo and Cy; be given by

formula (58). Let ¢ be generalized Hopf’s lift, given by
Proposition 2 and corresponding to ~. Let R be given by

o -
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S
\/§R Pmax <2A ’9‘5/661/61’1’1 {1 H ”L ant }_I_
Hmin qo

Pmin

QmCLC[J
(ot >HL2<Q>9)). 66

Then for all @ > 0 such that

1 .
Ay = - (Boo — aBo2 (Eoo + Eor([[€]l 22 ()

Pe
A0
N V2B (ugu”2 o+ [QYVHRY?)) > 0 and (67)J
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2Pe ;
Ay = AF = dAvany| = [v/ Ao + VBo (€l gy + 12 VR)] -

S| 200 (T00) B2,
{C’oo + Ar Cp; max{1, ” }} > SRe? (68)

W™ c Bg implies W™t € Bp.

o -
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- .

2Pe ;
Ay = AF = dAvany| = [v/ Ao + VBo (€l gy + 12 VR)] -

S| 200 (T00) B2,
{C()() + Ar Cp; max{1, o }} > SRe2’ (70)

W™ e By implies Wm*! € Bp.
Theorem 2 There is a weak solution {9, v} €
W3(Q) x HY(Q)? for the Problem A , such that

199120 < /%2 (/40 + ol >+¢Borm1/2R)

_HSHLOO(Flat) <9<1, and |D(@ §)HL2
(71)J

\— qo
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where gis given by Proposition 2 with v = 20/ (pmazRe).

Now we are in position to pass to the limit when the
expansivity parameter « tends to zero.

First we remark that the a priori estimates from the previous
section are independent of «, |a| < ag, Where ag Is the

maximal positive « satisfying (67)-(68). Consequently we
have

o -
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Theorem 3 Let {J(a),v()}, a € (0, ap), be a sequence of
weak solutions to Problem A, satisfying the bounds (69).
Then there exists {997, 798} ¢ W13(Q) x H'(Q)3 and a
subsequence {J(ay), v(ayg)} such that

I ay) — 998, uniformly on
I ay) — 1903, weakly in W13(Q)
(o) — 9B, weakly in H'(Q)3.

Furthermore, {998, 798} is a weak solution for the
equatlons (/) — (9) , satisfying the boundary conditions
1/7)-(21) and the bounds (69).

o -
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Uniqueness

- .

The unigueness

Quite technical. For small data there is a unique weak
solution {7,9} € HY(Q)? x (W3(Q) N C(Q)) for Problem A ,
satisfying the bounds (69) .

o -
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The regularity of solutions

=

Lemma 22 Let c,p and A € C*°(IR) . Furthermore let

T € C® and S € C®(Ty,). Then ¥ € W26(Q) C CL1/2(Q).
Lemma 23 Let ¥ € W26(Q), let Ty,; € C™ and let v; € C*,

j = 1,2 satisfy (20). Then {@,p} € W24(Q) x Wh4(Q),

Vg < 400.

o -
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The regularity of solutions

=

Lemma 22 Let c,p and A € C*°(IR) . Furthermore let

T € C® and S € C®(Ty,). Then ¥ € W26(Q) C CL1/2(Q).
Lemma 23 Letd € W2%(Q), letI',; € C* and let v; € C*°,

j = 1,2 satisfy (20). Then {@,p} € W24(Q) x Wh4(Q),

Vg < 400.

Theorem 24 Let the assumptions on the data from Lemmas
22 and 23 hold true. Then every weak solution

{T,p, 9} € HY(Q) x L2(Q) x (HY() N L>(£)) for Problem A is
an element of W24(Q)3 x WhH(Q) x W24(Q) , Vg < oo.
Furthermore {7, p, 9} € C®(Q)°.

o -
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The Boussinesq limit

=

fIn this section we reconsider the limit when the expansivity
parameter « tends to zero. We saw at the end of the
section on existence of a weak solution that the obtained a
priori estimates allow passing to the Boussinesq limit.
Having justified the Oberbeck-Boussinesq system as the
limit equations when the expansivity parameter « tends to
zero, the next guestion is: What is the accuracy of the

approximation ? .
The answer relies on the uniqueness and regularity results

from the previous sections.

o -
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The Boussinesq limit

=

fIn this section we reconsider the limit when the expansivity
parameter « tends to zero. We saw at the end of the
section on existence of a weak solution that the obtained a
priori estimates allow passing to the Boussinesq limit.
Having justified the Oberbeck-Boussinesq system as the
limit equations when the expansivity parameter « tends to
zero, the next guestion is: What is the accuracy of the
approximation ? .
The answer relies on the uniqueness and regularity results
from the previous sections.
We start by studying the equations for the derivatives with
respect to «. For simplicity we suppose that

Vi, v are independentof o and vy =V1/(1 —a). (73

o -
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=

Proposition 25 Let us suppose that the conditions (67)-(68),
and (smallness of data), ensuring existence, unigueness
and regularity of a solution lying inside the ball defined by
the bounds (69). Furthermore let the solution {7, p, 9}

satisfies the inequalities

A Cla (S H
n= 2o Gl ><1+—>(Hcp1|rmmuvup —

Pe 2 V2
|’>\/HLOO(B) HV??H scons | >0 (74)
Pe L)
2 ,Um’m 1/4 200 fhmaz | -
Re Pmax (2> / \/7”D( )”L2 ) + HE@{ Re pPmin HU”LOO(Q)B

H? 2 712
| tAs ol oo () | (@) ()2 C6(R) + aH |07 s o
(75)
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BL2
-

where T
Hllc 0 M| 7 oo
o Hllentllzem [19]1<(0) 5
V2N
Then derivatives of the solution, with respect to «, exist at
all orders as continuous functions of a.

o -
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BL2
-

where T
Hllc 0 M| 7 oo
o Hllentllzem [19]1<(0) -
V2N
Then derivatives of the solution, with respect to «, exist at
all orders as continuous functions of a.

With this result, we are ready to state the error estimate for
Boussinesq’s limit.

First, we write the 1st order correction, i.e. the system
d

-

defining the first derivatives {w°, 7%, 6%} = 7, 9,0 }Ha=o:

o -
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BL3
o .

div {w’ —99P5951 =0 in Q (78)
— 9B (9P W) 5OF + {(@'V)9F + (9P V)) = —ar 6¢, — Vi
2 . :
+-_ Div (9P D) + 1/ (9P D(@@P)} in @ (79)

. )\(1903) )\/(1903)
div { B Pe Pe

OBFOEC,(99P) + °C,(99F)} =0 in Q  (80)

' =0,4" =0 on Tpy; 6" =0a"=Vs¢, on Ty, (81)

Vv + (798¢, (99F) — vV©E)°—

1
W’ =0 and — P—e(AwOB)wM

N N (09B)0Vv 998 - it = 8" on Ty, 62
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BL4

o .

Under the conditions of the preceding Proposition, with

a = 0, the system (78)-(82) has a unique smooth solution.
Hence we have established rigorously the O(a?)
approximation for Problem A . Clearly, one could continue to

any order.
The result is given by the following theorem, which is a

straightforward corollary of Proposition 25.

o -
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BL4

o .

Under the conditions of the preceding Proposition, with

a = 0, the system (78)-(82) has a unique smooth solution.
Hence we have established rigorously the O(a?)
approximation for Problem A . Clearly, one could continue to

any order.
The result is given by the following theorem, which is a

straightforward corollary of Proposition 25.
Theorem 26 Let us suppose the assumptions of Proposition

25. Then we have

|17 — 79° — ad’|[ypre (s + |9 — 99F — al® ||y () < Ca®
(85)

inf ||p — p?P — ap? + C|| 7o (s < Ca? 86
ot lp—p ap” + Cl|pe(qyp < Ca (86)

Lwhere p¥ =70 — 2u(998) div " /(3 Re). J
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