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Terme, and lecture during this week. I wish to thank the
organizers of the workshop for inviting me to give a talk,
and to Antonio Fasano for the hospitality.
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The results are obtained in collaboration with A. Farina and
A. Fasano (Dipartimento di Matematica, Universita degli
Studi di Firenze, Italy).

The numerical results on the model, by Thierry Clopeau
(UFR Maths, Lyon) and Javier Olaiz (Ezus, Lyon) will not be
presented now.
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Heat and glass 1

Glass is an amorphous material. Its molecules are not
arranged in a regular, specific pattern, like those of a
crystalline material, but are random in their
configuration.

⇒ glass reacts to heat differently than do other
materials. Whereas metals on heating instantaneously
change from solid to liquid once they reach a specific
temperature (called the melting point), glass goes
through a very gradual transformation from a material
which behaves like a solid to a material which behaves
like a liquid.

It is this unique characteristic of glass which allows it to
be blown, or to be worked in the myriad ways which we
call kilnforming.
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Heat and glass 2

Because of its amorphous molecular configuration
glass at room temperature is sometimes referred to as
a supercooled liquid. Even in its solid form its molecular
structure is that of a stiff liquid.

As it is heated, glass gradually begins to behave more
and more like a liquid until at temperatures above
1093◦C it will flow easily with a consistency similar to
honey.

The temperatures at which glass is worked in a kiln are
usually between 593◦C and 927◦C. Within this range a
wide variety of effects may be achieved by a variety of
processes.
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Drawing of continuous glass fibers 1

The drawing of continuous glass fibers is a widely used
procedure. Continuous glass fibers are produced in a
range of diameters and to tight tolerances for different
end uses (reinforcing plastics, cement, paper etc ).
They could be woven into industrial fabrics.

Industrial glass fibers are manufactured using a bushing
with more than a thousand nozzles. A glass melting
furnace supplies it with molten glass with a temperature
between 1100 and 1500◦C.

The hot glass melt is then drawn down into a fiber by a
drawing force. The result is production in parallel of
many fibers, which are cooled and collected on the
rotating drum.

FILM: tetonfilm.mpg
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Drawing of continuous glass fibers 3

Figure 1: Industrial drawing of continuous glass

fibers
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Drawing of a single glass fiber 1

In order to understand the glass fiber forming process, it
is important to study the drawing of a single glass fiber.

It is an important simplification, since we can disregard
interaction between fibers and between fibers and the
surrounding air.

For a single glass fiber, hot glass melt is drawn from a
dye into air. After leaving the dye, the molten glass
forms a free liquid jet. The jet is cooled and attenuated
as it proceeds through the air. Finally, the cold fiber is
collected on a rotating drum.

A mathematical model of the manufacturing procedure
contains necessarily both free boundary hydrodynamics
and thermal processes. Their coupling comes from the
temperature dependent viscosity, density and surface
tension.
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Drawing of a single glass fiber 2

We may distinguish four stages (see Fig. 2):

(a) The flow of molten glass at high temperature in the
reservoir, feeding the fiber production system.

(b) The non-isothermal flow through the die, with rigid
lateral boundaries.

(c) The viscous jet flow with rapidly changing physical
parameters, owing to the fast cooling, up to the
formation of a "fiber" (high viscosity, small variation of
the axial velocity and very small radial velocity).

(d) The motion of the glass fiber, drawn down by a device
called spinner (or spool).

From (b) to (d) axial velocity changes by several orders of
magnitude.
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Drawing of a single glass fiber 4

Figure 2: A schematic of the four stages in the glass
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Molten glass 1

We suppose that molten glass is a Newtonian fluid.

Industrial unknowns are the following:
velocity is v = vzez + vrer;

hydrodynamic pressure is p;
temperature is T ;

fiber radius (being the distance from the symmetry
axis ) is R = R(t, z);

Coefficients measured for the industrial aplications
are the following:

specific heat is cp = cp(T );
density is ρ = ρ(T );
viscosity is µ = µ(T );
surface tension is σ = σ(T );
thermal conductivity is λ = λ(T ).
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Molten glass II

Concerning the shear viscosity µ we assume the well
known Vogel-Fulcher-Tamman’s (VFT) formula

log µ(ϑ) = −Cµ+
Aµ

TR − Bµ + TR

(
T̃w − 1

)
ϑ
, Aµ, Bµ, Cµ > 0.

(1)
µ is monotonically decreasing with ϑ. We note that the
temperature in the problems we are considering is such
that the denominator in (1) is always positive. ϑ is the
rescaled dimensionless temperature , that is

ϑ =
T − TR

Tw − TR
, ⇔ T = TR

[
1 + ϑ

(
T̃w − 1

)]
, with T̃w =

Tw

TR
(2)

where Tw, Tw > TR, is another characteristic
temperature (the temperature at the inlet boundary).

Lecture at the CIME-EMS School ”Mathematical models in the manufacturing of glass, polymers and textiles”, Montecatini Terme, Italy, September 14, 2008 – p. 12/31



Molten glass III

The characteristic parameter values are the following:

constant axial velocity of the spooler Vf ;

extrusion temperature TE;

extrusion density ρE = ρ(TE);

specific extrusion heat cpE = cp(TE);

extrusion surface tension σE = σ(TE);

extrusion viscosity µE = µ(TE);

thermal conductivity of extrusion λE = λ(TE);

ambient temperature T∞;

axial extrusion velocity vE;

extrusion heat transfer coefficient hE ;
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Molten glass IV

characteristic fiber length L;

characteristic radius RE = R(·, 0)

All quantities evaluated at the extrusion temperature TE are
denoted with a suffix E.
We suppose that the radiation effects/heat transfer are
given by the formula of Kase-Matsuo for the heat transfert
coefficient

h =
λ∞

R(z, t)
C

(2ρ∞vz(z, t)R(z, t)

µ∞

)m
, (3)

Industrial data: For the surrounding air, we take as the air
viscosity µ∞ = 53.8E − 6 Pa s; for the air density we take
ρ∞ = 0.232 kg/m3 and the thermal conductivity of the air is
set to be λ∞ = 0.084 W/mK.
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Some industrial data

Value 1 Value 2 Value 1 Value 2

hE 10Wm2

K
2.36Wm2

K
σE 0.1 N/m 0.37 N/m

TE 1227o C 1145.15o C L 0.06m 0.06m

ρE 2.4 · 103 kg

m3 2.735 · 103 kg

m3 T∞ 27o C 612o C

cpE 1046.6 J
kgK

1591.23 J
kgK

λE 1, 0 W
mK

3 W
mK

C 1, 117 0.42 m 0.137 0.334

µE 83Nsec
m2 179.17Nsec

m2 RE 0.000838m 0.000838m

vE 0.0031 m
sec

0.0007 m
sec

Tg 627o C 635o C

Data from the reference G. Gupta, W.W. Schultz: Non-isothermal
flows of Newtonian slender glass fibers. Int. J. Non-Linear Mech.,
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Some industrial data II

Vol. 33 (1998), p. 151-163. (Value 1), and from the
reference R. von der Ohe, Simulation of Glass Fiber Forming
Processes, Thesis PhD (2005) - Aalborg University, 2005. pp. 192.
(Value 2)

Value 1 Value 2
Vf 14, 46 m/sec 35 m/sec
ε Ca = µEvERE/(LσE) 0.036 0.00475

Bo = ρEgL
2/(µEvE) 326 767.94

Re = ρEvEL/µE 5.42 · 10−3 6.43 · 10−4

Pe = cpEρEvEL/λE 470.82 61.102

Bi = hERE/λE 8.38 · 10−3 1.98 · 10−3

2 Bi / (Pe ε2) 0.1845 0.332

Lecture at the CIME-EMS School ”Mathematical models in the manufacturing of glass, polymers and textiles”, Montecatini Terme, Italy, September 14, 2008 – p. 16/31



I1a

Lecture at the CIME-EMS School ”Mathematical models in the manufacturing of glass, polymers and textiles”, Montecatini Terme, Italy, September 14, 2008 – p. 17/31



Mathematical model I

Therefore, we need a mathematical model which describes
the motion of a mechanically incompressible, but thermally
expansible viscous fluid . Such model could be widely used in
industrial simulations of flows of hot melted glasses,
polymers etc.
The model for a mechanically incompressible, but thermally
expansible viscous fluid could be thought as a particular
case of the compressible heat-conducting Navier-Stokes
system.
Nevertheless, the pressure isn’t linked any more to the
density and to the temperature and it plays the same role
like in the incompressible case. Consequently, we should
be careful with the thermodynamical modeling.
Important function is the thermal expansion coefficient

β = d
dT log ρ and its typical value βR.
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Mathematical model II

Following the lines from the related papers:
R.H. Hills, P.H. Roberts, On the motion of a fluid that is
incompressible in a generalized sense and its relationship
to the Boussinesq Approximation, Stability Appl. Anal.
Continua, Vol. 3 (1991), pp. 205-212.
K.R. Rajagopal, M. Ru̇žička, A.R. Srinivasa, On the
Oberbeck-Boussinesq approximation, Math. Models
Methods Appl. Sci, Vol. 6 (1996), p. 1157-1167.
R.Kh. Zeytounian, The Bénard problem for deep
convection: rigorous derivation of approximate equations,
Int. J. Engng. Sci., Vol. 27 (1989), pp. 1361-1366.
R.Kh. Zeytounian, Joseph Boussinesq and his
approximation: a contemporary view, C.R. Mécanique, Vol.
331 (2003), p. 575-586. ,
we obtained in [1] a thermodynamically consistent
derivation of the model.
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Mathematical model III

This will be subject of the lecture by Dr. Farina. He will also
discuss the linear stability of the model.

MODEL:

div ~v = −
Kρ

ρ(ϑ)
(Tw − 1)

Dϑ

Dt
(4)

ρ(ϑ)
D~v

Dt
= −

Kρ(Tw − 1)ϑ

Fr2
ρ(ϑ)~e3 −∇P+

1

Re
Div

{
2µ(ϑ)D(~v) −

2µ(ϑ)

3
div ~vI

}
(5)

P = p+ ρRgx3, ρ(ϑ) = ρR − βRρRTR

(
T̃w − 1

)
ϑ, (6)
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Mathematical model IV

ρ(ϑ)cp1
(ϑ)

Dϑ

Dt
=

(
|Kρ|PR

ρRcpRTR (Tw − 1)

)
1 + (Tw − 1)ϑ

ρ(ϑ)

[DP
Dt

ρRgH

PR
v3

]
+

1

Pe
div (λ∇ϑ) + 2

Ec

Re(Tw − 1)
µ(ϑ)

(
|D(~v)|22 −

1

3
( div ~v)2

)
, (7)

In the phenomena, we are considering, Tw − 1 is small but
not negligible. Typically Tw − 1 is of order 10−1
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Mathematical model IV

ρ(ϑ)cp1
(ϑ)

Dϑ

Dt
=

(
|Kρ|PR

ρRcpRTR (Tw − 1)

)
1 + (Tw − 1)ϑ

ρ(ϑ)

[DP
Dt

ρRgH

PR
v3

]
+

1

Pe
div (λ∇ϑ) + 2

Ec

Re(Tw − 1)
µ(ϑ)

(
|D(~v)|22 −

1

3
( div ~v)2

)
, (8)

In the phenomena, we are considering, Tw − 1 is small but
not negligible. Typically Tw − 1 is of order 10−1 with

cp 1(ϑ) = −
1 + (Tw − 1)ϑ

(Tw − 1)2
d2ψ

dϑ2
, ψ = e− Ts,

(the specific Helmholtz free energy).
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Mathematical model V

We list the non-dimensional characteristic numbers
appearing in (4)–(7):

Re = ρRV L
µR

is Reynolds’ number. Fr= V√
gL

is Froude’s

number.

Pr = µRcpR

λR
is Prandtl’s number. Ec= V 2

cpRTR
is Eckert’s

number.

Pe = Re·Pr= V LρRcpR

λR
is Peclet’s number. Ma= V

c is Mach’s
number.

Kρ = −βRTR is the thermal expansivity number.
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Mathematical model V

We list the non-dimensional characteristic numbers
appearing in (4)–(7):

Re = ρRV L
µR

is Reynolds’ number. Fr= V√
gL

is Froude’s

number.

Pr = µRcpR

λR
is Prandtl’s number. Ec= V 2

cpRTR
is Eckert’s

number.

Pe = Re·Pr= V LρRcpR

λR
is Peclet’s number. Ma= V

c is Mach’s
number.

Kρ = −βRTR is the thermal expansivity number.

In particular,
ρ(ϑ) = 1 +Kρ(Tw − 1)ϑ.
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Mathematical model VI

We are interested in studying flows of very viscous heated
fluids (liquid glasses, . . . ). , i.e. the fluids in question are
mechanically incompressible but thermally compressible.
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Mathematical model VI

We are interested in studying flows of very viscous heated
fluids (liquid glasses, . . . ). , i.e. the fluids in question are
mechanically incompressible but thermally compressible.
For the energy equation (7), this means that the Eckert
number is very small (frequently of order 10−12) and the
Mach number is also quite small (of order 10−6).
Consequently, the terms containing the Eckert number are
dropped in applications.

ρ(ϑ) = 1 − αϑ.

Next, we define the Archimedes’ number

Ar =
|Kρ| (Tw − 1)

Fr
2

=
|Kρ| (Tw − 1)

V 2

R

gH, ⇒ α = ArFr
2.
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Mathematical model VII

We complete this modeling section by recalling formal
derivations of the Oberbeck-Boussinesq system. In the
applications we consider, the parameters are close to the
conditions of the formal derivation of the
Oberbeck-Boussinesq approximation from Schlichting’s
book, pages 86- 91:

Tw−1 ≈ 0, V ≈ 0, Ma ≈ 0 and Ar =
−Kρ

Fr2
(Tw−1) = O(1),

(9)
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Mathematical model VII

We complete this modeling section by recalling formal
derivations of the Oberbeck-Boussinesq system. In the
applications we consider, the parameters are close to the
conditions of the formal derivation of the
Oberbeck-Boussinesq approximation from Schlichting’s
book, pages 86- 91:

Tw−1 ≈ 0, V ≈ 0, Ma ≈ 0 and Ar =
−Kρ

Fr2
(Tw−1) = O(1),

(10)
where Ar is the Archimedes number. Having Archimedes’
number of order 1 means that the buoyancy forces are
important. Under these assumptions, the compressible
Navier-Stokes system (4)-(7) could be approximated by the
Oberbeck-Boussinesq system
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Mathematical model VIII

div ~vOB = 0 (11)

D~vOB

Dt
= −Ar ϑOB~eg −∇pOB

mot +
1

Re
Div

{
2µ(ϑOB)D(~vOB)

}

(12)

cp1(ϑ
OB)

DϑOB

Dt
=

1

Pe
div

(
λ(ϑOB)∇ϑOB

)
, (13)
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Mathematical model VIII

div ~vOB = 0 (14)

D~vOB

Dt
= −Ar ϑOB~eg −∇pOB

mot +
1

Re
Div

{
2µ(ϑOB)D(~vOB)

}

(15)

cp1(ϑ
OB)

DϑOB

Dt
=

1

Pe
div

(
λ(ϑOB)∇ϑOB

)
, (16)

In the situation which is of interest for us, the quantities
from (9) are small but non-zero. Our goal is to study a
model which generalizes the Oberbeck-Boussinesq
approximation and reduces to it in the limit (9). Our
equations read as follow:
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Mathematical model IX

div ~v = −
Kρ

ρ(ϑ)
(Tw − 1)

Dϑ

Dt
(17)

ρ(ϑ)
D~v

Dt
= −Ar ϑ~eg −∇P +

1

Re
Div

{
2µ(ϑ)D(~v)

}
−

2

3Re
∇

(
µ(ϑ) div ~v

)
(18)

ρ(ϑ)cp1(ϑ)
Dϑ

Dt
=

1

Pe
div

(
λ(ϑ)∇ϑ

)
, (19)
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Mathematical model IX

div ~v = −
Kρ

ρ(ϑ)
(Tw − 1)

Dϑ

Dt
(20)

ρ(ϑ)
D~v

Dt
= −Ar ϑ~eg −∇P +

1

Re
Div

{
2µ(ϑ)D(~v)

}
−

2

3Re
∇

(
µ(ϑ) div ~v

)
(21)

ρ(ϑ)cp1(ϑ)
Dϑ

Dt
=

1

Pe
div

(
λ(ϑ)∇ϑ

)
, (22)

We’ll consider the system (17)-(19) in the realistic situation,
when the parameter α = −Kρ(Tw − 1) (the " expansivity ” or
the ”thermal expansion coefficient ”) is small.
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Boundary conditions for the energy equation I

The glass thermal conductivity contains 2 terms:

λ = λT (T 0K) + λRoss(T
0K) (23)

The 2nd term corresponds to the thermal conductivity due
to the radiation effects. Expression for it comes from
Rosseland’s approximation and reads:

λRoss(T ) =
16σSBn

2T 3

3βRoss
[W/(mK)], (24)

with σSB = 5, 67038 · 10−8 W/(m2K4), n ≈ 1, 5 and
βRoss = 132. Consequently, the characteristic Rosseland’s
thermal conductivity is λRossR = 12, 68.
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Boundary conditions for the energy equation II

Furthermore, for standard thermal conductivity we have
λTR = 2, qui donne pour la conductivité thermique
caractéristique λR = 14, 68, leading to Peclet’s number of
order one in the interior of the die.
We note that The die is considered as a cylindrical domain
Ω = {r < R(x3, φ) ≤ 1} × [0, 2π] × (0, 1)

in IR3. R : [0, 1] × [0, 2π] → (0, 1] is a C∞-map. The boundary
of Ω contains 3 distinct parts: the lateral boundary
Γlat = {r = R(x3, φ}, the inlet boundary Γin = {x3 = 1 and
r ≤ R(1, φ), φ ∈ [0, 2π]} and the outlet boundary
Γout = {x3 = 0 and r ≤ R(0, φ), φ ∈ [0, 2π]}.
α ≥ 0
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Boundary conditions for the energy equation III
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Boundary conditions for the energy equation IV

At the lateral boundary Γlat we impose the condition of the
heat convection with radiation:

−
1

Pe
∇T · ~n =

Q0

cpRρRV
(T −

Text

TR
)−

ϕc

cpRρRV TR
+

ET 3

R

cpRρRV
(T 4 − (

Text

TR
)4) (25)
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Conclusion I

In the die, typical situation is the following:

We deal with a flow with small expansivity and small
Reynolds number. Archimedes number is of order 1.
Therefore, the dominant term in the momentum
equation is Stokes’ operator with temperature
dependent viscosity. Time changes are slow and they
are observed at the time scale t/Re.

Peclet’s number is of order one and energy equation is
a non-linear parabolic equation.

Presence of geometrical singularities (angles etc) could
lead to creation of vortices and interesting flow effects.

Geometry influences strongly possible separation of the
fiber in the interior of the die, leading to the well-known
fiber cold breakdown .
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