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Introduction

The aim of these lectures is the study of bifurcations within holomorphic families
of polynomials or rational functions by mean of pluripotential-theoretic and ergodic
tools.

The starting point of the subject is a discovery made by DeMarco [DeM2] who
shown that the bifurcation locus of any such family is the support of a (1, 1) closed
positive current which admits both the Lyapunov exponent function and the sum of
the Green function evaluated on critical points as a global potential. This current,
denoted Ty, is called the bifurcation current.

In the recent years, several authors have investigated the geometry of the bifurcation
locus using the current Ty and its powers Thi A Thir A - - - A Thie [DeM1], [DeM2],
[BB1], [P], [DF], [Du], [BE], [BB2], [BB3], [G]. The approach followed by these
papers enlights a certain stratification of the bifurcation locus which corresponds
to the degree of self-intersection of Ti;. The main results are exposed in these
notes, they go from laminarity statements for certain regions of the bifucation locus
to Hausdorff dimension estimates and includes precise density (or equidistribution)
properties relative to various classes of specific parameters.

We have not discussed bifurcation theory for families of endomorphisms of higher
dimensional complex projective spaces but have mentionned, among the techniques
presented in these notes, those which also work in this more general context. This
aspects appear in the papers [BB1], [BDM], [P] and in the survey [DS].

We have tried to give a synthetic and self-contained presentation of the subject.
In most cases, we have given complete and detailed proofs and, sometimes, have
substantially simplify those available in the litterature. Although basics about er-
godic theory are discussed in the first chapter, we have not treated the elements
of pluripotential theory. The other lectures delivered during this week will provide
most of the needed knowledge. For that we also refer the reader to the appendix
about pluripotential theory available in Sibony’s [Sib] and Dinh and Sibony’s [DS]
surveys or to Demailly’s book [Dem].
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Chapter 1

Rational functions as ergodic
dynamical systems

1.1 Potential theoretic aspects

1.1.1 The Fatou-Julia dichotomy

A rational function f is a holomorphic map of the Riemann sphere to itself and may
be repesented as the ratio of two polynomials

f . ao+a1z+a222+---+adzd
T bot+biztboz24-+bgzd

where at least one of the coefficents ay and b; is not zero. The number d is the
algebraic degree of f. In the sequel we shall more likely speak of rational map. Such
a map may also be considered as a holomorphic ramified self-cover of the Riemann
sphere whose topological degree is equal to d. Among these maps, polynomials are
exactly those for which oo is totally invariant: f~!'{oco} = f{oo} = occ.

It may also be convenient to identify the Riemann sphere with the one-dimensional
complex projective space P! that is the quotient of C?\ {0} by the action z — - 2
of C*. Let us recall that the Fubini-Study form w on P! satisfies 7*(w) = dd°In || ||
where the norm is the euclidean one on C2.

In this setting, the map f can be seen as induced on P! by a non-degenerate and
d-homogenous map of C?

F(z1,2) = (@02 + a12128 " + -+ - 4 ag2f, boz§ + brzazd ' + -+ 4 by2f)

through the canonical projection 7 : C?\ {0} — P!
The homogeneous map F' is called a lift of f; all other lifts are proportional to F'.

A point around which a rational map f does not induce a local biholomorphism
is called critical. The image of such a point is called a critical value. A degree
d rational map has exactly (2d — 2) critical points counted with multiplicity. The
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critical set of f is the collection of all critical points and is denoted Cy.

As for any self-map, we may study the dynamics of rational ones, that is trying
to understand the behaviour of the sequence of iterates

fri=fo-of.

The Fatou-Julia dynamical dichotomy consists in a splitting of P! into two dis-
joint subsets on which the dynamics of f is radically different. The Julia set of
a rational map f is the subset of P! on which the dynamics of f may drastically
change under a small perturbation of initial conditions while the Fatou set is the
complement of the Julia set.

Definition 1.1.1 The Julia set Jy and the Fatou set F; of a rational map f are
respectively defined by:

T ={z € P/ ("), is not equicontinuous near z}

.Ff = Pl\jf.

Both the Julia and the Fatou set are totally invariant: J; = f(jf) = f! (jf)
and Fy = f(]-}) = ffl(]:f). In particular f induces two distinct dynamical sys-
tems on Jy and Fy.

The dynamical system f : Jy — Jy is chaotical. However, as it results from the
Sullivan non-wandering theorem and the Fatou-Cremer classification, the dynamics
of a rational map is totally predictible on its Fatou set.

The periodic orbits are called cycles and play a very important role in the un-
derstanding of the dynamics.

Definition 1.1.2 A n-cycle is a set of n distinct points zg, 21, * -, zn_1 Such that
f(zi) = zig1 for 0 <i<n—2 and f(z,-1) = 20. One says that n is the exact period
of the cycle.

Each point z; is fixed by f". The multiplier of the cycle is the derivative of f™
at some point z; of the cycle and computed in a local chart: (X ofo Xfl)/(x(zi)). It
is easy to see that this number depends only on the cycle and neither on the point
z; or the chart y. By abuse we shall denote it (f™)’(z;).

The local dynamic of f near a cycle is governed by the multiplier m. This leads to
the following

Definition 1.1.3 The multiplier of a n-cycle is a complex number m which is equal
to the deivative of f computed in any local chart at any point of the cycle.

When |m| > 1 the cycle is said repelling
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when |m| < 1 the cycle is said attracting

when |m| =1 the cycle is called neutral.

Repelling cycles belongs to the Julia set and attracting one to the Fatou set. For
neutral cycles this depends in a very delicate way on the diophantine properties of
the argument of m.

The first fundamental result about Julia sets is the following.
Theorem 1.1.4 Repelling cycles are dense in the Julia set.

It is possible to give an elementary proof of that result using the Brody-Zalcman
renormalization technique (see [BM]). We shall see later that repelling cycles actu-
ally equidistribute a measure whose support is exactly the Julia set.

1.1.2 The Green measure of a rational map

Our goal is to endow the dynamical system f : Jy — J with an ergodic structure
capturing most of its chaotical nature. This is done by exhibiting an invariant mea-
sure puy on Jr which is of constant Jacobian. Such a measure was first constructed
by Lyubich [L]. For our purpose it will be extremely important to use a potential-
theoretic approach which goes back to Brolin [Br] for the case of polynomials. We
follow here the presentation given by Dinh and Sibony in their survey [DS] which
also covers mutatis mutandis the construction of Green currents for holomorphic
endomorphisms of P*.

The following Lemma is the key of the construction. It relies on the fundamental
fact that
d ' frw = w4+ ddv

for some smooth function v on P!. This follows from a standard cohomology argu-
ment or may be seen concretely by setting v := d~!1In ”ﬁ;ﬂfg L for some lift F of f.

Lemma 1.1.5 Up to some additive constant, there exists a unique continuous func-
tion g on P! such that d=" f™v — dd°g+w for all positive measure v which is given
by v = w + ddu where u is continuous.

Proof. Let us set g, == v+ - - -+ d""vo f*71. One sees by induction that
d"f"v = w+ dd°g, + dd°(d "u o f). As the sequence (g,), is clearly uniformly

converging, the conclusion follows by setting ¢ := lim,, g,,. ad

It might be useful to see how the function g can be obtained by using lifts.



Lemma 1.1.6 Let F be a lift of a degree d rational map f. The sequence d " In || F"(2)||
converges uniformly on compact subsets of C*\ {0} to a function G which satisfies
the following invariance and homogeneity properties:

Z) GFOF:dGF
ii) Gr(tz) = Gp(z) + In]t|, vVt € C.
Moreover, Gp —In|| || = g o ™ where g is given by Lemma 1.1.5.

Proof. Let us set G,,(z) := d " In||F"(2)|. As F is homogeneous and non-degenerate
there exists a constant M > 1 such that

arllzll? < 1P (2)] < Mzl

Thus ;|| F™(2)||4 < |F™™(2)|| < M||F"(2)]|* which, taking logarithms and dividing
by d"*! yields |Gpi1(2) — Gy (z)| < 224, This shows that G, is uniformly converging
to Gr. The properties i) and ii) follows immediately from the definition of Gp.

According to the proof of Lemma 1.1.5, ¢ = lim, (v +---+d "o f"fl)

where vonm = d'ln % To get the last assertion, it suffices to observe that
d*vo ffor =G — Gy O

The two above lemmas lead us to coin the following

Definition 1.1.7 Let F' be a lift of a degree d rational map f. The Green function
Gr of F on C? is defined by

Gp :=lim,d " In || F"(z)].
The Green function of gr of F on P! is defined by
Grp—In|| || =grom.

We will sometimes use the notation gy instead of gp. The function gy is defined
modulo an additive constant.

The function G is p.s.h on C? with a unique pole at the origin.

It is worth emphasize that both g and G are uniform limits of smooth functions.
In particular, these functions are continuous. One may actually prove more (see [DS]
Proposition 1.2.3 or [BB1] Proposition 1.2):

Proposition 1.1.8 The Green functions Gp(z) and gr(z) are Hélder continuous
in F and z.

We are now ready to define the measure p and verify its first properties.
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Theorem 1.1.9 Let [ be a degree d > 2 rational map and g be a Green function of
f. Let py :=w+dd°g. Then py is a f-invariant probability measure whose support
is equal to Jy. Moreover g has constant Jacobian: f*uy = duy.

Proof. As a weak limit of probability measures, pif is a probability measure.

We shall use Lemma 1.1.5 for showing that f*u; = duy. By construction
v+dlgof =lim,v+dlg,of = lim,g,y1 = g and thus d'f*uy = w +
dd®v +d~'dd*(go f) =w +dd*(v+d g0 f) = py.

The invariance property fius = iy follows immediately from f*uy = dpy by
using the fact that f, f* = d Id.

Let us show that the support of pf is equal to Jy. If U C Fy is open then f™w
is uniformly bounded on U and therefore pf(U) = lim [, d™" f™w = 0, this shows
that Supp py C Jr. Conversaly the identity f*uuy = dpy implies that (Supp pr)
is invariant by f which, by Picard-Montel’s theorem, implies that (Supp uf)® C Fp.O

It is sometimes useful to use the Green function G for defining local potentials
of Hy.

Proposition 1.1.10 Let f be a rational map and F be a lift. For any section o of
the canonical projection  defined on some open subset U of P, the function Gpoo
is a potential for iy on U.

Proof. On U one has dd“Gr o 0 = dd°gr + dd°In ||o|| = dd°gr + w = . O

The measure iy is the image by the canonical projection 7 : C? \ {0} — P! of
a Monge-Ampere measure associated to the Green function Gp.

Proposition 1.1.11 Let F be a lift of a degree d rational map f and Gr a Green
function of F. The measure pp = dd°G} A dd°G}. is supported on the compact set
{Gr =0} and satisfies F*up = d*pp and Tour = piy.

This construction will be used only once in this text and we therefore skip its
proof. Observe that the support of up is contained in the boundary of the compact
set K := {Gr < 0} which is precisely the set of points z with bounded forward
orbits by F'.

The case of polynomials presents interesting features, in particular the Green
measure coincides with the harmonic measure of the filled-in Julia set.

Proposition 1.1.12 let P be a degree d polynomial on C. The Green function gp
of P is the subharmonic function defined by

gp = lim, d™"In" | P"|
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and is a global potential of the Green measure of P.

Proof. We may take F := (24, P(2), 28) as a lift of P. Then F" := (25" P*(2), 2¢")
and

1
Gp(z,1) = 5 limd ™" In (1+[P*(=1)]) = lim ™" In™ | P"(z)).

The conclusion then follows from Proposition 1.1.10. ad

1.2 Ergodic aspects

1.2.1 Equidistribution towards the Green measure, mixing

Definition 1.2.1 Let (X, f, u) be a dynamical system. One says that the measure
W 1s mizing if and only if

lim, [y (pof)Yu=[con [yOn

for any test functions @ and 1.

This means that the events {f"(z) € A} and {x € B} are asymptotically indepen-
dants for any pair of Borel sets A, B.

As we shall see, the constant Jacobian property implies that Green measures are
mixing.

Theorem 1.2.2 The Green measure iy of any degree d rational map f is mizing.

Proof. Let us set ¢, :== [ ¢ puy and ¢y := [ py where ¢ and ¢ are two test func-
tions. We may assume that c, = 1.

Since py and @y are two probability measures, there exists a smooth function
u, on P! such that:

opy = piy + Aug,. (1.2.1)

On the other hand, by the constant Jacobian property f*u; = py we have:

d7" [ (0 = colig) = (0o " = cp )y (1.2.2)

Now, combining 1.2.1 and 1.2.2 we get:

12



/(chf”)@/)uf—(/souf /wuf = [(po [Mus—coep =

/w po fr—cp) uf—/dfd"f"*( Y = Co)piy :/ ) (o= 1) py =
[@rrosu, = [var@u) = [virau,o ) /( o ") A
This shows that lim,, [(p o )¢ uy = ([ pp) ([ py)- O

It is not hard to show that a mixing measure is also ergodic.

Definition 1.2.3 Let (X, f, u) be a dynamical system. One says that the measure
1 1s ergodic if and only if all integrable f-invariant functions are constants.

In particular this allows to use the classical Birkhoff ergodic theorem which says
that time-averages along typical orbits coincide with the spatial-average:

Theorem 1.2.4 Let (X, f, 1) be an ergodic dynamical system and ¢ € L*(u). Then
for u almost every x one has:

lim,, % Zz;é @(fk(z)) = fX Iny p

The measure-theoretic counterpart of Fatou-Julia theorem 1.1.4 is the following
equidistribution result which has been first proved by Lyubich [L]. The content of
subsection 1.3.2 will provide another proof which exploits the mixing property.

Theorem 1.2.5 Let [ be a rational map of degree d. Let R}, denote the set of n
periodic repelling points of f. Then d™" ) p. 0. is weakly converging to puy.

Let us finally mention another classical equidistribution result. We refer to [DS]
for a potential theoretic proof.

Theorem 1.2.6 Let f be a degree d rational map. Then
for any a € P! which is not exceptional for f.

We recall that a is exceptional for f if and only if a = co and f is a polynomial
or a € {0,00} and f is of the form z*<.

Although this will not be used in this text, we mention that the Green measure
py of any degree d rational map f is the unique measure of maximal entropy for
f. This means that the entropy of 1 is maximal and, according to the variational
principle, equals In d which is the value of the topological entropy of f.
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1.2.2 The natural extension

To any ergodic dynamical system, it is possible to associate a new system which is
invertible and contains all the information of the original one. It is basically ob-
tained by considering the set of all complete orbits on which is acting a shift. This
general construction is the so-called natural extension of a dynamical system; here
is a formal definition.

Definition 1.2.7 The natural extension of a dynamical system (X, f, ) is the dy-
namaical system <)/(\', f, /2) where

55 = {i' = (xq)nez / T, € X, f(xn) = anrl}
f(i') = (anrl)nEZ

s.t. xg € B} = u(B).
The canonical projection my : X — X is given by my(#) = xo. One sets T for (f)~".

Let us stress that myo f = fomy and (my)4(f1) = p. The measure /i inherits most
of the ergodic properties of p.

Proposition 1.2.8 The measure [i is ergodic (resp. mizing) if and only if p is
ergodic (rep. mizing).

We refer the reader to the chapter 10 of [CFS] for this construction and its prop-
erties.

A powerful way to control the behaviour of inverse branches along typical orbits
of the system (Jy, f, f17) is to apply standard ergodic theory to its natural extension.
This is what we shall do now. The first point is to observe that one may work with
orbits avoiding the critical set of f. To this purpose one considers

)A(reg:{iejf/xne_fcf;VnEZ}.

As [1 is f—invariant and p does not give mass to points, one sees that /l()/(\}eg) =1

Definition 1.2.9 Let z € )/(:Teg and p € Z. The injective map induced by f on
some neighbourhood of x, is denoted f,,. The inverse of f,, is defined on some
neighbourhood of xpy1 and is denoted f, 1. We then set

fin:: 710...0 -1

T T—n r—1°

The map f," is called "iterated inverse branch of f along T and of depth n”.
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Proposition 1.2.10 For any sufficently small and strictly positive €, there exists a
function a, : X,y —10, 1 such that

a.(7(2)) > e “a.(z) and

[t is defined on D(x_i, o (T5(2)))

for fi-a.e. T € )?reg and every k € Z.

The function «, is a so-called slow function. The interest of such a function is,
that in some situations, its decreasing is negligeable with respect to other datas. For
instance, in some circumstances, Proposition 1.2.10 will tell us that the the local
inverses f;}k are defined on discs of essentially fixed radius along the orbit z.

Proof. We need the following quantitative version of the inverse mapping theorem
(see [BD] lemme 2).

Lemma 1.2.11 Let p(z) := |f'(z)| , r(z) := p(x)®. There exists ¢ > 0 and, for
€ €]0, €], 0 < Cy(€), Cs(€) such that for every x € J:

1- f is one-to-one on D(z,C(€)p(x)),
2- D(f(x),Ca(€)r(x)) C f(D(x, Ci(e)p(x))),
5 Lip £ < e5p(e)™" on D(f(x), Caler()).

Let us set B.(2) := Min (1, Cy(€e)r(x_1)). According to the two first assertions
of the above Lemma, f, ! = f;' is defined on D(x, 8c(#)) and, similarly, f,} =
f;,cl(z) is defined on D(x_y, B.(7%(%))). All we need is to find a function «, such that
0 < a. < fe and ae(7(2)) > e ‘().

As p admits continuous local potentials, the function In 5, is ji-integrable. Then,
by Birkhoff ergodic theorem, [¢Inf. i = limy, o ﬁZZﬂ In B.(7%(2)) and, in

particular

1y 4 oo I%\ InB.(7"(2)) =0 for fira.e. & € X.

In other words, for ji-a.e. € )/freg there exists ng(e, ) € N such that .(7"(z)) >
eIl for |n| > ng(e, ). Setting then V. := inf|,<pg(e.q) (B(7"(2))el"€) we obtain a
measurable function V : )?Teg —]0,1] such that: B.(7"(2)) > e 1"V (&) for fi-a.e.
S )/freg and every n € Z. It suffices to take a. () := Inf,cz{B.(7"(2))e"l}. 0
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1.3 The Lyapunov exponent

1.3.1 Definition, formulas and some properties

Let us consider the ergodic dynamical system (Jr, f, ptf) which has been constructed
in the last section. As the measure ;; has continuous local potentials, the function
In | f'] belongs to L' (uy) for any choice of a metric | | on P*. We may therefore apply
the Birkhoff ergodic theorem to get:

1 1 n—1
lim = In |(f*)'()] =li7gn5kzzgln|f’(f’“(2))l :/Pl In[f] py, pp-ae . (1.3.1)

This identity shows that the integral fP1 In | f’| s does not depend on the choice
of the metric | | and leads to the following definition.

Definition 1.3.1 The Lyapunov exponent of the ergodic dynamical system (Jy, f, f1f)
1s the number

L(f) = Jp In|f'] py-
For simplicity we shall usualy say that L(f) is the Lyapunov exponent of f.

As the identity 1.3.1 shows, the Lyapunov exponent L(f) is the exponential rate
of growth of |(f™")'(z)| for a typical z € J.

Remark 1.3.2 Using the invariance property fipiy = puy one immediately sees that
L(f") = nL(f).

We shall need an expression of L(F') which uses the formalism of line bundles.
In order to prove it we first compare the Lyapunov exponents of f with the sum of
Lyapunov exponents of one of its lifts F'.

Proposition 1.3.3 Let F' be a lift of some rational map fof degree d. Then the sum
of Lyapunov exponents of F with respect to up is given by L(F) := [In|det F'| pp
and is equal to L(f) + Ind.

Proof. let F be a polynomial lift of f. Using the fact that f*w = |f/|>w, it is not
difficult to check that

LKl

= aTFee et

1f' (o

for any z such that 7(z) = £&. We thus have

2
Ly @)l + ma = L ]

1 ny/
T +Eln\det(F )'(2)]-
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Then the conclusion follows by Birkhoff theorem since ||F™(z)|| stays away from
0 and +o00 when z is in the support of pp and m pup = piy. ad

For any integer D the line bundle Op: (D) over Plis the quotient of (C?\ {0}) xC
by the action of C* defined by (z,z) — (uz,uPz). We denote by [z, x| the elements
of this quotient.

The canonical metric on Op:(D) may be written
Iz, 2]llo = e~ P I#l|].

The homogenity property of Gg allows us to define another metric on Op:(D) by
setting

Iz, 2]llg, = e~ Pr®]a].

Let us underline that, according to Definition 1.1.7, || - ||a, = e P97 || - |o.

The following Lemma will turn out to be extremely useful when we shall relate
the Lyapunov exponent with bifurcations.

Lemma 1.3.4 Let f be a rational map of degree d > 2 and F' be one of its lifts. Let
D :=2(d — 1) and Jacp be the holomorphic section of Op1(D) induced by det F".
Then

L) +tnd= [ 1nfJacrlo, .
Pl

Proof. The section Jacp is defined by Jacg(w(z)) := [z, det F'] for any z € C*\ {0}.
Using Proposition 1.3.3, the fact that G vanishes on the support of ur and T, up =

py we get

L(f)+lnd:/

ln\detF’\uF:/ In|det F'| up =
C2

Gp'({0})

/ In (e P9r@| det F'|) pp :/ In||Jacp o mllg, pr =
Gp' ({0} c?

[ wlacelo ny.
Pl

O

It is an important and not obvious fact that L(f) is stricly positive. It actually
follows from the Margulis-Ruelle inequality that L(f) > 3 In(d) where d is the degree
of f. We will presnt later a simple argument which shows that this bound is equal
to Ind for polynomials. Zdunik and Mayer ([Z], [May]) have proved that the bound
%ln(d) is taken if and only if the map f is a Lattes example. Let us summarize
these results in the following statement.
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Theorem 1.3.5 The Lyapunov exponent of a degree d rational map is always greater
than %ln(d) and the equality occurs if and only if the map is a Lattes example.

We recall that a Lattes map is, by definition, induced on the Riemann sphere
from an expanding map on a complex torus by mean of some elliptic function. We
refer to the survey paper of Milnor [Mi2] for a detailed discussion of these maps.

A remarkable consequence of the positivity of L(f) is that the iterated inverse
branch f;" (see definition 1.2.9) are approximately e "*-Lipschiptz and are defined
on a disc whose size only depends on .

Proposition 1.3.6 There ezists g > 0 and, for e €]0, €], two measurable functions
Ne © Xpeg —0,1] and Se : X,eq —|1,+00] such that the maps f;" are defined on
D(x9,m:.(2)) and Lip f;™ < Se(2)e L9 for every n € N and ji-a.e. & € X,o,.

Proof. We may assume that 0 < ¢p < £. Since f;" = f;! o---o f! the third

assertion of Lemma 1.2.11 yields InLip f;" < n§ — > ' Inp(z_). By Birkhoff
ergodic theorem we thus have

lim sup % InLip f;" < —L+ 5 for fi-ae & € X.

Then there exists ng(#) such that Lip f;" < e ™£=9 for n > ny(#) and it suffices
to set Se 1= maxo<p<ng(s) (e”(L_E)Lip f;”) to get the estimate

Lip f;" < S.(2)e ™9 for every n € N and fi-a.e. & € )A(Teg.

We now set 7. := 3= where . is the given by Proposition 1.2.10. Let us check by

induction on n € N that f;" is defined on D(zo, n.(2)) for frra.e. & € X and every
n € N. Here we will use the fact that the function . is slow: a.(7(2)) > e “a(Z).
Assume that f;" is defined on D(xo, 775(:13)). Then, by our estimate on Lip f. ", we
have

fi—n (D (,1‘07 7’]5(&7))) C D(l‘—TH ein(Lie)Oée(i')) )
On the other hand, by Proposition 1.2.10, the branch fz__ln_ is defined on the disc

1
D(x_p, ce(7"*1(2))) which, as «. is slow, contains D(z_,,e™™q(3)). Now,
since 0 < €y < £ one has e~ (e > o=nl—€) and thus f;("ﬂ) = fi1 of;"is

defined on D(zq,7:(%)). O

1.3.2 Lyapunov exponent and multipliers of repelling cycles

The following approximation property will play an important role in our study of
bifurcation currents. We would like to mention that Deroin and Dujardin have
recently used similar ideas to study the bifurcation in the context of kleinean groups

(see [DD]).
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Theorem 1.3.7 Let f : P' — P! be a rational map of degree d > 2 and L the
Lyapunov exponent of f with respect to its Green measure. Then:

L =lim, d Y o 21n (7Y (p)]

where R := {p € P' / p has exact periodn and |(f)'(p)| > 1}.

Observe that the Lyapunov exponent limy, + In [(f*)(p)| of f along the orbit of a

point p is precisely equal to % In |(f™) (p)| when p is n periodic. The above Theorem

thus shows that the Lyapunov exponent L of f is the limit, when n — 400, of the
averages of Lyapunov exponents of repelling n-cycles.

To establish the above Theorem, we will prove that the repelling cycles equidis-
tribute the Green measure (15 in a somewhat constructive way and control the mul-
tipliers of the cycles which appear. For proving the equidistribution, we follow the
approach used by Briend-Duval [BD] in the context of endomorphisms of P¥, the
positivity of the Lyapunov exponent plays a crucial role there. This strategy actu-
ally yields to a version of Theorem 1.3.7 for endomorphisms of P*; this has been
done in [BDM]. Okuyama has given a different proof of Theorem 1.3.7 in [O], his
proof actually does not use the positivity of the Lyapunov exponent. The proof we
present here is that of [Be] with a few more details.

Proof. For the simplicity of notations we consider polynomials and therefore work
on C with the euclidean metric. We shall denote D(z,7) the open disc centered at
x € C and radius r > 0. From now on, f is a degree d > 2 polynomial whose Julia
set is denoted J and whose Green measure is denoted p.

We shall use the natural extension (see subsection 1.2.2) and exploit the posi-
tivity of L through Proposition 1.3.6. Let us add a few notations to those already
introduced in Propositions 1.2.10 and 1.3.6 . Let 0 < ¢, be given by Proposition
1.2.10.

For 0 < e < ¢y and n, N € N we set:

~<)
Zm
Il
——
=
Mm
<)
~
=
O
AV
2|~
o
=)
a.
N
&
AN
=
——

For 0 < e < L and n, N € N we set:

R, :={peC/ f"p)=pand |(f")(p)| = L7}
Py =d7" ZR; Op

R,:=R:={peC/ f*(p)=pand|(f*)(p)| > 1}
f = iy =d " R, Op-
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We have to show that uZ — y and L = lim,, ? Yo I |(f™) ()l

The following Lemma reduces the problem to some estimates on Radon-Nikodym
derivatives.

Lemma 1.3.8 If any weak limit o of (N;)n for € €]0, €] satisfies 22 > 1 for some

!
7
dvsy

¢ >0 and every N € N then pr — p and L = lim, == .. In|(f")(p)|.

Proof. We start by showing that uS — u for any € € |0, L]. Let o be a weak limit of
(N;)n Since all the p, are probability measures, it suffices to show that o = p.

do

davs

Assume first that 0 < € < ¢g. By assumption %% > 1 and therefore o > yj\', for

every N € N. Letting N — 400 one gets o > pu. This actually implies that o = p
since

o(J) < limsup,, pS(J) < lim, d:ljl =1=p(J).

We have shown that u;, — u for 0 < € < €p. Let us now assume that ¢ =:¢; <e.
From p, > pS! and pst — p one gets 0 > p. Just as before this implies that o = p.

We now want to show that L = lim, ©= 3" .. In|(f™)'(p)|. Let us set ¢, (p) :=
~1In|(f™)(p)|. For M > 0 one has

L= €0 ) <7 Y enlp) = [l <

§/Ma:p(1n|f’|,—M),un
J
since p, — p and p, = pk — p we get

(L —¢€) <liminfd™ Z on(p) < limsupd™ Z on(p) <

Rn Rn
/Max(ln|f’|,—M),u.
J

To obtain imd ™"}, n(p) = L it suffices to make first M — +oo and then ¢ — 0.
Since there are less than 2ndz periodic points whose period strictly divides n, one
may replace R, by R} := {p € P! / phas exact period n and |(f")(p)| > 1}. O

Let us now finish the proof of Theorem 1.3.7. We assume here that 0 < e < .

Let a € )/ff\, and a := mw(a). For every r > 0 we denote by D, the closed disc centered
at a of radius r. According to Lemma 1.3.8, it suffices to show that any weak limit
o of (), satisfies

1
o(D,) > v§(D,s), for any integer N and all 0 < r’ < N (1.3.2)
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Let us pick 7 <7 < . We set D, :=n"4(D,) and :

—{xGDF‘I regN/f ( )me;’é@}

Let also consider the collection S, of sets of the form f;"(D,) where & runs in Cp.
As f." is an inverse branch on D, of the ramified cover f", one sees that the sets
of the collection S,, are mutually disjoint.

Let us momentarily admit the two following estimates:

d"(Card S,) < p2(D,) forn big enough (1.3.3)

~

d~"(Card S,) u(D,) > u(f(Dr N X5y n) N Dy). (1.3.4)
Combining 1.3.3 and 1.3.4 yields:

a(f(D, N X5y n) N Do) < (D)D)

which, by the mixing property of fi, implies

~

Vi (Do)u(Dy) = (D, 0 X5y )i Dyr) < p(Dy)o (D)

since pu(D,s) > 0, one gets 1.3.2 by making r — ' .

Let us now prove the estimate 1.3.3. We have to show that D, contains at least

(Card Sn) elements of B2 when n is big enough. Here we shall use Proposition 1.3.6.
For every & € C,, C )?ﬁegN one has n.(2) > + and S.(Z) < N and thus the map
f; " is defined on D, (r < &) and Diam f;™(D,) < 2r Lip f;" < 2rS.(2)e 79 <
2rNe n(L=e),
As moreover f;"(D,) meets D,/ there exists ng, which depends only on €, r and 7/,
such that f;"(D,) C D, for every & € C,, and n > ny. Thus, by Brouwer theorem,
f; " has a fixed point p,, € f."(D,) for every z € én and n > ng. Since the elements
of S, are mutually disjoint sets, we have produced (Card Sn) fixed points of f™ in
D, for n > ngy. It remains to check that these fixed points belong to R?*. This
actually follows immediately from the estimates on Lip f; ™. Indeed:

FY )| = 1) (o)l 72 > (Lip f37) T > N7 len(m9) > en(-20

for n big enough.

Finally we prove the estimate 1.3.4. Let us first observe that

r(f (DN Xy n) N Dw) C | £ (1.3.5)

CEECn
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This can be easily seen : if & € f~"(D, ereg ~)ND, then ug = 7(a) € D, Nf;"(Dy)
where & := f(d) € D, ﬂXregN

By the constant Jacobian property we have ,u(f;"(Dr)) =d "u(D,) and, since the
sets f,"(D,) of the collection S,, are mutually disjoint, we obtain

p( U f(Dy) = (Card S,) d"u(D;). (1.3.6)

#€Cn
Combining 1.3.5 with 1.3.6 yields 1.3.4:

(Card S,,) d™"u(D,

) > plm( A_”(ﬁr NnX¢
a[rton(f(D, N Xty n) N Dw)] >

fegn) N Dw)] =
| >a(f™D:n X ~) N Dy).
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Chapter 2

Holomorphic families

We introduce here the main spaces in which we shall work in the subsequent chapters
and present some of their structural properties.

2.1 Generalities

2.1.1 Holomorphic families and the space Rat,

Let us a sart with a formal definition.

Definition 2.1.1 Let M be a complex manifold. A holomorphic map
f:MxP— P!

such that all rational maps fr := f(A,-) : P! — P! have the same degree d > 2 is
called holomorphic family of degree d rational maps parametrized by M. For short,
any such family will be denoted (fx),cp-

Any degree d rational map f := % is totally defined by the point
lag: - :ag:bg:---: b in the projective space P??*!. This allows to identify the
space Raty of degree d rational maps with a Zariski dense open subset of P24+,
We can be more precise by looking at the space of homogeneous polynomial maps

of C? which is identified to C??*2 by the correspondance
(ag, -+ ag,bg -+, by) — <Zi:1 a2y S bz ‘).

Indeed, Rat, is precisely the image by the canonical projection 7 : C?+2 — p2d+l
of the subspace Hy of C?**2 consisting of non-degenerate polynomials. As H, is the
complement in C2¢*+2 of the projective variety defined by the vanishing of the resul-

tant Res((Z?zl a2z biz{zg_i>, one sees that Raty = P21\ ¥, where ¥y

is an (irreducible) algebraic hypersurface of P24+,
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From now on, we will always consider Raty as a quasi-projective manifold. We
may therefore also see any holomorphic family of degree d rational maps with param-
eter space M as a holomorphic map f from M to Rat,. In particular we may take
for M any submanifold of Raty; this is especially interresting when M is dynamically
defined as are, for instance, the hypersurfaces Per, (w) which will be defined in the
next section.

The simplest example of holomorphic family is the family of quadratic polyno-
mials. Up to affine conjugation, any degree 2 polynomial is of the form 2% 4+ a. To
understand quadratic polynomials it is therefore sufficent to work with the family
(22 +a) e

In most cases, when considering a holomorphic family (fx),c,,, we shall make
the two following mild assumptions.

Assumptions 2.1.2 Let (fy),c), be any holomorphic family of degree d rational
maps.

A1 The marked critical points assumption means that the critical set C of fy is
given by 2d—2 graphs: C\ = U3 2{¢;(\)} where the maps M > X+ ¢;(\) € P?
are holomorphic.

A2 The no persistent neutral cycles assumption means that if f\, has a neutral
cycle then this cycle becomes attracting or repelling under a suitable small
perturbation of Ag.

2.1.2 The space of degree d polynomials

As for quadratic polynomials, there exists a nice parametrization of the space of
degree d polynomials.

Let P; be the space of polynomials of degree d > 2 with d — 1 marked critical
points up to conjugacy by affine transformations. Although this space has a natural
structure of affine variety of dimension d — 1, we may actually work with a specific
parametrization of P; which we shall now present.

For every (c,a) := (c1,¢,- -+ C4_2,a) € CT! we denote by P., the polynomial
of degree d whose critical points are (0, ¢y, -+, ¢g_2) and such that P,.,(0) = a?. This
polynomial is explicitely given by:

d—1 .
1 1) .
Peo:= Ezd + ; %de(c)z] + a“

where ;(c) is the symmetric polynomial of degree i in (cy, - - -, cq—2). For conve-
nience we shall set ¢y := 0.
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Thus, when considering degree d polynomials, instead of working in P; we may
consider the holomorphic family

(Pe) e

whose parameter space M is simply C%~!. Using this parametrization, one may
exhibit a finite ramified cover 7 : C*~! — P, (see [DF] Proposition 5.1).

It will be crucial to consider the projective compactification P41 of C?~1 = M.
This is why we wanted the expression of P, , to be homogeneous in (¢, a) and have
used the parameter a? instead of a. In this context, we shall denote by P, the
projective space at infinity : P, := {[c:a: 0] ;(c,a) € C 1\ {0}}.

2.1.3 Moduli spaces and the case of degree two rational
maps

The group of Mdbius transformations, which is isomorphic to PSL(2, C), acts by
conjugation on the space Raty of degree d rational maps. The dynamical properties
of two conjugated rational maps are clearly equivalent and it is therefore natural to
work within the quotient of Rat, resulting from this action.

The moduli space Mody is, by definition, the quotient of Rat,; under the action
of PSL(2,C) by conjugation. We shall denote as follows the canonical projection:

II: Raty — Mody
fo—f

We shall usually commit the abuse of language which consists in considering an
element of Mod, as a rational map. For instance, ” f has a n-cycle of multiplier w”
means that every element of f posseses such a cycle. We shall also sometimes write
f instead of f.

Although the action of PSL(2,C) is not free, it may be proven that Mod, is a
normal quasi-projective variety [Sil].

Remark 2.1.3 The following property is helpful for working in Mody. FEvery ele-
ment [ of Raty belongs to a local submanifold Ty whose dimension equals 2d —2 and
which is transversal to the orbit of f under the action of PSL(2,C). Moreover, T}
is invariant under the action of the stabilizer Aut(f) of f which is a finite subgroup
of PSL(2,C). Finally, H(Tf) is a neighborhood of f in Mody and 11 induces a
biholomorphism between Ty /Aut(f) and I1(T}).
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In his paper [Mil], Milnor has given a particularly nice description of Mod,

which we will briefly present. The reader may also consult the fourth chapter of
book of Silverman [Sil].

A generic f € Rats has 3 fixed points with multipliers p1, p2, t3. The symmetric
functions

O1 = f1 + plg + p3, O 1= fiflp + fifig + foft3, 03 1= [i1fl243

are clearly well defined on Mod, and it follows from the holomorphic index formula
> 1= =1 that
0'3—0'1+2:O. (2].].)

Milnor has actually shown that (o1, 05) induces a good parametrization of Mods
([Mil]).

Theorem 2.1.4 The map Mody — C? defined by f + (01, 02) is a biholomorphism.

It will be extremely useful to consider the projective compactification of Mods
obtained through the above Theorem:

Mody > f+— (01 : 09 : 1) € P?
whose corresponding line at infinity will be denoted by £
L:={(01:02:0); (01,09) € C*\ {0}}.

It is important to stress that this compactification is actually natural in the sense
that the "behaviour near £ captures a lot of dynamically meaningful information.

2.2 The hypersurfaces Per,(w)

We give some geometrical properties of dynamically defined subsets of the parameter
space which will play a central role in our study.

2.2.1 Defining Per,(w) using dynatomic polynomials

For any holomorphic family of rational maps, the following result describes precisely
the set of maps having a cycle of given period and multiplier.

Theorem 2.2.1 Let f : M x P' — P! be a holomorphic family of degree d > 2
rational maps. Then for every integer n € N* there exists a holomorphic function
pn on M x C which is polynomial on C and such that:
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1- for any w € C\ {1}, the function p,(\, w) vanishes if and only if fx has a
cycle of exact period n and multiplipler w

2- pp(A, 1) =0 if and only if fx has a cycle of exact period n and multiplier 1 or
a cycle of exact period m whose multiplier is a primitive r'* root of unity with
r>2andn=mr

3- for every A\ € M, the degree Ny(n) of pn(X, ) satisfies d~"Ny(n) ~ %
This leads to the following
Definition 2.2.2 Under the assumptions and notations of Theorem 2.2.1, one sets
Per,(w) := {X € M/ p,(\,w) =0}
for any integer n and any complex number w.

According to Theorem 2.2.1, Per,(w) is (at least when w # 1) the set of pa-
rameters A for which f, has a cycle of exact period n ad multiplier w. Moreover,
Per,(w) is an hypersurface in the parameter space M or coincides with M. We also
stress that the estimate on the degree Ny(n) of p, (A, -) will be important in some of
our applications.

We now start to explain the construction of the functions p,,. It clearly suffices to
treat the case of the family Rat, and then set p, (A, w) := p,(fr, w) for any holomor-
phic family M > A — f, € Raty. Our presentation borrows to the fourth chapter
of the book of Silverman [Sil] and the paper [Mil] of Milnor.

We will consider polynomial families; to deal with the general case one may
adapt the proof by using lifts to C2. According to the discussion we had in subsec-
tion 2.1.2, any degree d polynomial ¢ will be identified to a point in C4!.

The key point is to associate to any integer n and any polynomial ¢ of degree

d > 2 a polynomial @7, whose roots, for a generic ¢, are exactly the periodic

points of ¢ with exact period n. Such polynomials are called dynatomic since they
generalize cyclotomic ones, they are defined as follows.

Definition 2.2.3 For a degree d polynomial ¢ and an integer n one sets

D, (2) =" (2) — 2.

The associated dynatomic polynomials are then defined by setting

., (2) = [T (Po(2))"H

where p: N* — {—=1,0,1} is the classical Mdbius function.
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It is clear that @, is a polynomial whose roots are all periodic points of ¢ with
exact period dividing n, and that ®7, |, is a fraction whose roots and poles belong to
the same set. Actually @7 , is still a polynomlal but this is not at all obvious. This
will be shown by studying its valuation at any m-periodic point of ¢ for m|n and
deeply relies on the fact that the sum ka ( ) vanishes if n > 1. We shall obtain
a precise description of the roots of @7,

Theorem 2.2.4 Let ¢ be a polynomial of degree d > 2. Then @, is a polynomial
whose roots are the periodic points of ¢ with exact period m dzmdmg n and multiplier

w satisfying w" =1 when 2 <7r:= .

The proof of the above theorem will be given in the next subsection, for the
moment we admit it and prove Theorem 2.2.1. Let us note that the degree v4(n) of
D, is given by va(n) = >, d* (%) and is clearly equivalent to d™ since |u| € {0,1}

and z(1) = 1. We may also observe that (")’ (2) = 1 for any root z of @7, whose
period strictly divides n.

The construction of p, (¢, w) requires to understand the structure of the zero
set of (¢, z) = ®%,.(z). We recall that ¢ is seen as a point in C*~'. Here are the
informations we need.

Proposition 2.2.5 The set Per, := {(¢,2) / ®} ,(z) = 0} is an algebraic subset of
C4 1 x C. The roots of ®7,,, are simple and have ezact period n when ¢ € Ci 1\ X,
for some proper algebmzc subset X, of C41.

Proof. One sees on 2.2.3 that @ (2) is rational in . On the other hand, ®} ()
is locally bounded as it follows from the description of its roots given by Theorem
2.2.4. Thus @7, (2) is actually polynomial in .

Let us set A(p ) H#] (ai(¢) — aj(p)) where the a; are the roots of @7 counted
with multiplicity. This is a well defined function which vanishes exactly When 7,
has a multiple root. This function is holomorphic outside its zero set and therefore
everywhere by Rado’s theorem. Then {A = 0} is an analytic subset of C?~! which
is proper since g 1= 2% ¢ {A = 0}.

Let Y,, be the projection of Per,, N{(¢")'(2) = 1} onto C?~!. By Remmert mapping
theorem Y, is an analytic subset of C?~!. Using ¢, again one sees that Y, # C4-1,
One may take X, := {A =0} UY,. 0

Let Z(®7,,,) be the set of roots of @7, counted with multiplicity. If 2 € Z(®}, )
has exact perlod m with n = mr, we denote by w,,(z) the r-th power of the multiplier
of z (that is (¢™)'(z)). As Theorem 2.2.4 tells us :

a point z is periodic of exact period n and w,(z) # 1 if and only if

z € 2(® ) and wy(2) # 1.
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Let us now consider the sets
A (o) = {wn(2); 2 € Z(P],,)}

and let us denote by o} (")(go), 1 <i < yy(n), the associated symmetric functions.

The symmetric functions o ™) are globally defined and continuous on C%! and,

according to Proposition 2.2.5, are holomorphic outside X,,. These functions are
therefore holomorphic on C4~!. We set

g (0, w) =TT o7 () (—aw) atm) =,

By construction g,(¢,w) = 0 if and only if w € A} (¢) and ¢, is holomorphic in
(¢, w) and polynomial in w. As Proposition 2.2.5 shows, the elements of Z(®7 )
are cycles of exact period n and therefore each element of A’(y) is repeated n
times when ¢ ¢ X,,. This means that there exists a polynomial p,(p,-) such that
an(,) = (Pu(p, )" when ¢ ¢ X,,. As p,(¢,w) is holomorphic where it does not
vanish one sees that p, extends to all C?~! x C. In other words, p, may be defined
by

(Pu(0, )" = gu(0, w) = [T24M 7™ (p) (—w)ram—i,

The degree Ny(n) of p,(X,-) is equal to tv4(n) = %Zk‘n p(%)d*. In particular
d_”Nd(n) ~ % g

2.2.2 The construction of dynatomic polynomials

We aim here to prove Theorem 2.2.4. For this purpose, let us recall that the Mobius
function p: N* — {—1,0,1} enjoys the following fundamental property:

Z,u <%> = 0 for any n € N*. (2.2.1)

k|n

Let us also adopt a few more notations. The valuation of &, ( resp. (I>*%n) at
some point z will be denoted a, (¢, n) ( resp. ai(p,n)). The set of m-periodic points
of ¢ will be denoted Per(p, m).

The following lemma summarizes elementary facts.

Lemma 2.2.6 Let ¢ be a polynomial and z € Per(y,1). Let A\ := ¢'(z), then for
q > 2 one has:

Z) A 7& l = az(%Q) = az(wa 1) =1
i) A#F1and N1 =1= a,(v,q) > a,(¢,1) =1
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i) A=1=a,(v,q) = a,(¢,1) >
Proof. We may assume z = 0 and set ¢ = AX +aX°+0(X¢). Then @, , is equal to
(A2 —1) X 4+ o(X) when (A —1) # 0 and to qa X+ o(X°¢) if A = 1. The assertions
(]
) and m|n. We denote by A the
When A is a root of unity

n

.3'

) to 7i7) then follow immediately.
We have to compute a*(p,n) for z € Per,(¢p,
™) (2)) and set N :

A= (¢
we denote by r its order. Clearly, Theorem 2.2.4 will be proved if we establish the

multiplier of z (i.e
following three facts
F1: N=1=ai(p,n) >0
F2: N>2and AN #1lorA=1= a(p,n) =0
F3: N>2 MW =1land A\ # 1= ai(p,n) >0and ai(p,n) > 0iff r = N.
Besides definitions, the following computation will use the obvious facts that
(p, k) = 0 when k # gm for some ¢ € N* and that @7 = (p2)™
n
(q—m) a'z((pa qm) -

Zu( ) axlp, k) = q;u
Z,u(—>az%qm Zu( )aup ).

qlN
We now proceed Fact by Fact, always starting with the above identity

F1) a2(p,n) = p(1)as(e", 1) > 0.
F2) Since A7 # 1 when ¢|N although A = 1, the assertions i) and iii) of Lemma
2.2.6 tell us that a,(¢™,q) = a,(¢™,1). Then al(p,n) = <Zq‘N,u< )) a,(e™, 1)

which, according to 2.2.1, equals 0
F3) When r is not dividing ¢ then A7 # 1 and, by the assertion i) of Lemma
2.2.6 we have a.(¢™,q) = a.(¢™,1). We may therefore write

( ) - 1)+q%qﬂ(g) a2 (™, q) — a.(p™ 1)

=D u

qlN
By 2.2.1, the first term in the above expression vanishes and we get
N/r m
(—> [az((p ,7“/{) - CLZ((P 71)]

n)=> p
k|2
S (B laste ) - e 1] = (e ) AU (")
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We finally consider two subcases.
or

If N # r then, by 2.2.1, 37, ~ pu (NT/T) = 0 and thus a’(¢,n) = a(e™, ).

Since z is a fixed point of ¢™" whose multiplier equals \" = 1, Fact F2 shows that
* mr N

az(e™, =) =0.

If N =r we get al(p,n) = al(e™,1) —a.(¢™, 1) = a.(¢™,1) — a.(¢™,1). Since
7 is a fixed point of ™ whose multiplier A\ satisfies A" = A = 1 and )\ # 1, the
assertion ii) of Lemma 2.2.6 shows that this quantity is strictly positive. ad

Remark 2.2.7 It follows easily from the above construction that the growth of
Pn(X, w) is polynomial in X when X\ € C4L. This shows that p,(\,w) is actually a
polynomial function on C4~! x C.

2.2.3 In the moduli space of degree two rational maps

Theorem 2.2.8 The map Mody — C? defined by f + (01, 02) is a biholomorphism.
Using this identification, p,(\,w) is a polynomial on C* x C. Moreover, for every
va(n)

fized w € C, the degree of p,(-,w) is equal to %5~ which is the number of hyperbolic

components of period n in the Mandelbrot set.

Let us recall the projective compactification Mody > f +— (01 : 09 : 1) € P?
whose corresponding line at infinity £ = {(o} : 05 : 0); (01,02) € C*\ {0}}.

Any Per,(w) may be seen as a curve in P2 We shall use the following facts
which are also due to Milnor ([Mil]).

Proposition 2.2.9 1) For allw € C the curve Peri(w) is actually a line whose
equation in C? is (w? + 1)A\; —wAy — (w® 4+ 2) = 0 and whose point at infinity
is (w: w?+1:0). In particular, Per1(0) = {\; = 2} is the line of quadratic
polynomials, its point at infinity is (0 : 1 :0).

2) Forn > 1 and w € C the points at infinity of the curves Per,(w) are of the
form (u:u?+1:0) withu? =1 and q < n.

The following Proposition, also du to Milnor (see Theorem 4.2 in [Mil]), implies
that the curves Per,(w) = {p,(-,w) = 0} have no multiplicity.

Proposition 2.2.10 Let No(n) := Card (Per,(0) N Per1(0)) be the number of hy-
perbolic components of period n in the Mandelbrot set. Then No(n) = @ where
va(n) is defined inductively by vo(1) = 2 and 2" = 37, va(k). Moreover, for any

w € A and any n € A we have Deg p,(-,w) = Ny(n) = Card (Per,(w) N Pery(n)) .

Working with the same compactification, Epstein [Epsl] has proved the bound-
edness of certain hyperbolic components of Mod,:
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Theorem 2.2.11 Let H be a hyperbolic component of Mody whose elements admit
two distinct attracting cycles. If neither attractor is a fived point then H is relatively
compact in Mods

2.3 The connectedness locus in polynomial fami-
lies
2.3.1 Connected and disconnected Julia sets of polynomials

Among rational functions, polynomials are characterized by the fact that oo is a
totally invariant critical point. For any polynomial P the super-attractive fixed
point co determines a basin of attraction

Bp(0) :={z € Cs.t. lim, P"(z) = oo}.

This basin is always connected and its boundary is precisely the Julia set Jp of
P. The complement of Bp(co) is called the filled-in Julia set of P.

Another nice feature of polynomials is the possibility to define a Green function
gp by setting

gp(z) = lim, m In* | P (z)|.

The Green function gp is a subharmonic function on the complex plane which van-
ishes exactly on the filled-in Julia set of P.

Any degree d polynomial P is locally conjugated at infinity with the polynomial
24, This means that there exists a local change of coordinates ¢p (which is called
Bottcher function) such that ¢p o P = (pp)? on a neighbourhood of co. It is
important to stress the following relation between the Bottcher and Green functions:

In |pp| = gp.

The only obstruction to the extension of the Bottcher function pp to the full
basin Bp(oo) is the presence of other critical points than oo in Bp(oo). This leads
to the following important result:

Theorem 2.3.1 For any polynomial P of degree d > 2 the folllowing conditions are
equivalent:

i) Bp(oo) is simply connected
ii) Jp is connected
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i) P is conformally conjugated to z¢ on Bp(o0).

The above theorem gives a nice characterization of polynomials having a con-
nected Julia set. Let us apply it to the quadratic family (2% + a),ec- The Julia
set J, of P, := 2% + a is connected if and only if the orbit of the critical point 0 is
bounded. In other words, the set of parameters a for which J, is connected is the
famous

Definition 2.3.2 Mandelbrot set. Let P, denote the quadratic polynomial 2+ a.
The Mandelbrot set M is defined by

M = {a € C s.t. sup, |P'(0)| < co}.

The Mandelbrot set is thus the connectedness locus of the quadratic family. It is
not difficult to show that M is compact. The compacity of the connectedness locus
in the polynomial families of degree d > 3 is a much more delicate question which
has been solved by Branner and Hubbard [BH]. We shall treat it in the two next
subsections and also present a somewhat more precise result which will turn out to
be very useful later.

2.3.2 Polynomials with a bounded critical orbit

We work here with the parametrization (Pc,a) g1 of Py and will use the pro-

(c,a)e
jective compactification P?~! introduced in the subsection 2.1.2.

We aim to show that the subset of parameters (¢, a) for which the polynomial P, ,
has at least one bounded critical orbit can only cluster on certain hypersurfaces of
P... The ideas here are essentially those used by Branner and Hubbard for proving
the compactness of the connectedness locus (see [BH] Chapter 1, section 3) but we

also borrow from the paper ([DF]) of Dujardin and Favre.

We shall use the following

Definition 2.3.3 The notations are those introduced in subsection 2.1.2. For every
0 <1 <d—2, the hypersurface I'; of Py is defined by:

[ :={lc:a:0]/ a;(c,a) =0}
where a; 1s the homogeneous polynomial given by:

d—1 ;
1 —1)47
a;(c,a) == P.,(¢;) = Ec? + (=1)

j=2

We denote by B; the set of parameters (c,a) for which the critical point ¢; of P.,
has a bounded forward orbit (recall that co =0):
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B; :={(c,a) € C* ' s.t. sup, |Pl,(c;)| < oo}
The key point is the following

Lemma 2.3.4 The intersection o NI'y N ---NTgq_o is empty and I';; N---NT;, has
codimension k in Py if 0 <17 < - <1 < d — 2.

Proof. A simple degree argument shows that P, ,(0) = P..(¢1) = -+ = P.4(c4—2) =0
implies that ¢; = -+ =c4o=a=0. Thus TyNT;N---NTj_o = 0. Then the
conclusion follows from Bezout’s theorem. O

Since the connectedness locus coincides with My<;<4—2B;, the announced result
can be stated as follows.

Theorem 2.3.5 For every 0 <1 < d — 2, the cluster set of B; in P, s contained
in T';. In particular, the connectedness locus is compact in C*1.

Let us mention the following interesting consequence. We recall that, according
to Remark 2.2.7, the sets Per,,(n) may be seen as algebraic subsets of the projective
space P41,

Corollary 2.3.6 If1 <k <d—1,m; <my <--- <my and sup,;<,<;, |7i| <1 then
Pery,, (m)N---N Pery, () is an algebraic subset of codimension k whose intersection
with C41 is not empty.

Proof. By Bezout’s theorem, Per,, (1) N - - - N Per,,, (nx) is a non-empty algebraic
subset of P?~! whose dimension is bigger than (d — 1 — k).

Any cycle of attracting basins capture a critical orbit. Therefore, Theorem 2.3.5
implies that the intersection of P, with Per,, (n1) N--- N Pery, (n;) is contained in
some I'; N---NI';, since the m; are mutually distinct and the |7;| strictly smaller than
1. Then, according to Lemma 2.3.4, P, N Per,,, (n;) N - - - N Per,,, (n;) has codimen-
sion k in P.,. The conclusion now follows from obvious dimension considerations. [

As the Green function g., of the polynomial P, , is defined by
Jea(z) == lim, d""In* | P ()|
one sees that
B = {(c,a) € C¥ 1 s.t. geqolc;) =0}

This is why the proof of Theorem 2.3.5 will rely on estimates on the Green functions
and, more precisely, on the following result.

Proposition 2.3.7 Let g., be the Green function of P., and G be the function

defined on C' by: G(c,a) := max{g.a(ck); 0 < k < d—2}. Let § := %.
Then the following estimates occur:
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1) G(c,a) < lnmax{|al,|ck|} + O(1) if max{|al,|ck|} > 1
2) max{g.q(2),G(c,a)} > In|z — | — In4.
Let us first show how Theorem 2.3.5 may be deduced from Proposition 2.3.7.

Proof of Theorem 2.3.5. Let ||(c,a)||o := max (|al, |cx]). We simply have to check

that 041(”(( )|)| ) tends to 0 when |[|(c, a)|| tends to +oo and g.,q(c;) stays equal to

0. As P..(¢;) = a4(c,a) and g.q(c;) = 0, the estimates given by Proposition 2.3.7
yield:
In||(c,a)]|e +O(1) > max (dgc,a(ci), G (e, a)) = max (gcya o P, .(c;),G(c, a)) >

1
> In Z|ai(ca a) — 0|

since ¢; is d-homogeneous we then get:

_Dinllie.a nl (c,a) B )
(1= ) 6.+ O(1) > I glo (o 50) = T

and the conclusion follows since W tends to 0 when ||(¢, a)|| tends to +oo. O
Let us end this subsection by giving a
Proof of Proposition 2.3.7. The first estimate is a standard consequence of the

uniform growth of P, at infinity. Let us however prove it with care. We will set
A= ||(C, a)||oo and MA(Z) = max(A’ |Z|) From

o d
[Pra(2)] < 3214(1 + dmax{ 2 a0y

we get |P.o(2)] < Cylz|? for |z| > A where the constant Cy only depends on d. We
may assume that Cy > 1. By the maximum modulus principle this yields

|Poa(2)| < CaMa(2)2.
It is easy to check that

Mu(Cz) < CMa(2) ifC > 1
MA(MA(Z)N) = MA(Z)N if A Z 1.

From now on we shall assume that A > 1. By induction one gets
veeggn—1 n
|Pra(2)] < Gt Ma(2)
which implies

Jea(z) < HG + Inmax ([[(c, a)llo, |2]) i [l(e, @)l > 1
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and in particular
G(e,a) < FG + (e a)lloo i [[(c, @)oo > 1.

The second estimate is really more subtle. It exploits the fact that the Green
function gp coincides with the log-modulus of the Bottcher coordinate function pp
and relies on a sharp control of the distorsions of this holomorphic function.

The Béttcher coordinate function is a univalent function .4 : {gea > G(c,a)} —
C such that ¢.,0 P, = cpia. It is easy to check that In|p. .| = g.. Where it makes

_ 1 . oile) _ >e
sense and that ¢..(z) = 2 — 6 + O(3) where 0 := -7 = &=

One thus sees that ¢cq : {ge,a > G(c,a)} = C\ D(0,e%“?) is a univalent map
whose inverse v, satisfies 1. ,(2) = 2+ 6 + O(%) at infinity. We shall now apply
the following result, which is a version of the Koebe 1-theorem (see [BH], Corollary

3.3), t0 Yeq-
Theorem 2.3.8 If F': C \ D, — C is holomorphic and injective and

F(z)=z2+> 2 % ~e€C\D,

n=1 zn>
then C\ Dy, C F(C \5,).

Pick z € C and set r := 2max (6907‘1(2),66‘(6’“)). Then z ¢ wc,a(C \Er) since
otherwise we would have €% (z) = |p.q(2)| > r > 2e%92(2).

Thus, according to the above distorsion theorem, z ¢ C \5(5, 27“). In other words
|z — 8] < 2r = 4max (e9), %) and the desired estimate follows by taking
logarithms. U
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Chapter 3

The bifurcation current

We consider in this chapter an arbitrary holomorphic family of degree d rational
maps (fx),ecp, With marked critical points (see 2.1.2). The Julia set of f\ wil be
denoted 7, its critical set C,.

Our first aim is to describe necessary and sufficient conditions for the Julia sets
J to move continuously (and actually holomorphically) with the parameter A. The
parameters around which such a motion does exist are called stable. We will show
that the set of stable parameters is dense in the parameter space; this is the essence
of the Mané-Sad-Sullivan theory. We will then exhibit a closed positive (1, 1)-current
on the parameter space whose support is precisely the complement of the stabilty
locus; this is the bifurcation current.

3.1 Stability versus bifurcation

3.1.1 DMotion of repelling cycles and Julia sets

As Julia sets coincide with the closure of the sets of repelling cycles (see Theo-
rems 1.1.4 and 1.2.5), it is natural to investigate how J) varies with A through the
parametrizations of such cycles.

Assume that f, has a repelling n-cycle {zo, fr,(20)," - - fo_l(zo)}. Then, the
implicit function theorem, applied to the equation f{(z) —z = 0 at (Ao, z0) shows
that there exists a holomorphic map hy(zo) : Uy — P! such that hy,(29) = 20 and
hi(zp) is a n-periodic repelling point of f for all A € Uy. Moreover, hy(-) can be
extended to the full cycle so that f\ o hy = hyo f,.

This shows that every repelling n-cycle of f\, moves holomorphically on some neigh-

bourhood of Ag.
These observations lead to the following formal definition.
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Definition 3.1.1 Let us denote by R, the set of repelling n-cycles of fx. Let €
be a neighbourhood of Ao in M. One says that R, , moves holomorphically on 2 if
there exists a map

h:Qx R/\OJL > ()\, Z) — h,\(Z) < R)\’n

which depends holomorphically on A and satisfies hy, = Id, fxohy = hyo fy,.

More generally, the holomorphic motion of an arbitrary subset of the Riemann
sphere is defined in the following way.

Definition 3.1.2 Let E be subset of the Riemann sphere and ) be a complex man-
ifold. Let \g € Q). An holomorphic motion of E over §) centered at \y is a map

h:QxE>(\z2) hy(z) €C
which satisfies the following properties:
i) hy, = 1d|g
ii) B>z hy(2) is one-to-one for every \ €

iii) 2> X+ hy(z) is holomorphic for every z € E.

The interest of holomorphic motions relies on the fact that any holomorphic
motion of a set F extends to the closure of £. This is a quite simple consequence
of Picard-Montel theorem.

Lemma 3.1.3 (basic A-lemma) Let £ C C be a subset of the Riemann sphere
and o : E x Q3 (z,t) — o(z,t) € C be a holomorphic motion of E over Q. Then

o extends to a holomorphic motion ¢ of E over ). Moreover & is continuous on
E x Q.

As 7, is the closure of the set of repelling cycles of fy, this lemma implies that
the Julia set 7, moves holomorphically over a neighbourhood V), of A\g in M as
soon as all repelling cycles of f), move holomorphically on V),. Moreover, the holo-
morphic motion obtained in this way clearly conjugates the dynamics: hy(Jy,) = J
and fyohy = hyo f\, on Jy,.

The above arguments lead to the following basic observation.
Lemma 3.1.4 If there exists a neighbourhood €2 of \g in the parameter space M
such that, for all sufficebtly big n , Ry,n moves holomorphically on €2, then there

exists a holomorphic motion hy : J\, — Jx which conjugates the dynamics.
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Let us mention here that there exists a much stronger version of the A-lemma,
which is due to Slodkowski and shows that the holomorphic motion actually ex-
tends as a quasi-conformal transformation of the full Riemann sphere (see Theorem
4.3.4). In particular, under the assumption of the above lemma, f, and f), are
quasi-conformally conjugated when A\ € €.

We may now define the set of stable parameters and its complement; the bifur-
cation locus.

Definition 3.1.5 Let (fx)\cp, be a holomorphic family of degree d rational maps.
The stable set S is the set of parameters \g € M for which there exists a neighbour-
hood €2 of Ao and a holomorphic motion hy of J\, over €} centered at Ao and such
that fxohy=hyo fy, on Jy,-

The bifurcation locus Bif is the complement M \ S.

By definition, § is an open subset of M but it is however not yet clear that it is
not empty. We shall actually show that S is dense in M. To this purpose we will
prove that the stability is characterized by the stability of the critical orbits. The
next subsection will be devoted to this simple but remarkable fact.

3.1.2 Stability of critical orbits

Let us start by explaining why bifurcations are related with the instability of critical
orbits.

As we saw in Lemma 3.1.4, a parameter )y belongs to the bifurcation locus if for

any neighbourhood €2 of g in the parameter space M there exists ng > 0 for which
Rrg.ne does not move holomorphically on (2.
It is not very difficult to see that this forces one of the repelling ng-cycles of fy,,
say R),, to become neutral and then attracting for a certain value A\; € Q2. Now
comes the crucial point. A classical result asserts that the basin of attraction of
any attracting cycle of a rational map contains a critical point (see [BM] Théoréme
I1.5). Thus, one of the critical orbit f¥ (c;()\)) is uniformly converging to Ry on a
neighbourhood of A\;. Then the sequence f¥ (c;(\)) cannot be normal on € since
otherwise, by Hurwitz lemma, it should converge uniformly to R, which is repelling
for X close to Ag. This arguments show that the bifurcation locus is contained in the
set of parameters around which the post-critical set does not move continuously.

This is an extremely important observation because it will allow us to detect bi-
furcations by considering only the critical orbits. It leads to the following definitions.

Definition 3.1.6 Let (f\),cy, be a holomorphic family of degree d rational maps.
A marked critical point ¢(\) is said to be passive at Ao if the sequence (f} (¢(N)))

n
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is normal on some neighbourhood of \g. If c()\) is not passive at Ao one says that it
is active. The activity locus of ¢()) is the set of parameters at which c¢(\) is active.

The key result may now be given.

Lemma 3.1.7 In a holomorphic family with marked critical points the bifurcation
locus coincide with the union of the activity loci of the critical points.

Proof. According to our previous arguments, the bifurcation locus is contained in
the union of the activity loci. It remains to show that, for any marked critical point
¢(X), the sequence (f}(¢(X))), is normal on 8. Assume that \g € S. As J), is a
perfect compact set, we may find three distinct points aq, as, as on J,, which are
avoided by the orbit of ¢()\g) . Since the holomorphic motion hy of J,, conjugates
the dynamics, the orbit of ¢()) avoids {hx(a;); 1 < j < 3} for all A in a small
neighbourhood of A\y. The conclusion then follows from Picard-Montel’s Theorem.
O

The following lemma is quite useful.

Lemma 3.1.8 If \g belongs to the activity locus of some marked critical point c(\)
then there ezists a sequence of parameters A\, — Ao such that c(\;) belongs to some
super-attracting cycle of fy, or is strictly preperiodic to some repelling cycle of f, .

Proof. Since ¢(\) is active at Ay it cannot be persistently fixed. After an ar-
bitrarily small perturbation of Ay we may asume that there exists holomorphic
maps ¢_o(A), c_1(A) near A\g such that fy (c_2(N)) = c_1(A), fa(c_1(N)) = ¢(N)
and Card {c_o(N\), c_1(A),c(N)} = 3. By Picard-Montel Theorem, the sequence
(f2(e(N))),, cannot avoid {c_(X), c—1(A), ¢(A)} on any neighbourhood of Ao.

A similar argument using Picard-Montel Theorem and a repelling cycle of period
ng > 3 shows that c¢(\) becomes strictly preperiodic for A arbitrarily close to Ag. O

We are now ready to state and prove Mané-Sad-Sullivan theorem.

Theorem 3.1.9 Let (f\),c,s be a holomorphic family of degree d rational maps with
marked critical points {c1(N), - -+, cag—2(N)}.
A parameter \g is stable if one of the following equivalent conditions is satisfied.

1) Ty, moves holomorphically around Ao (see definition 3.1.5)
2) the critical points are passive at \g (see definition 3.1.6)
3) fr has no unpersistent neutral cycles for X sufficently close to Ag.

The set S of stable parameters is dense in M.
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Proof. The equivalence between 1) and 2) is given by Lemma 3.1.7. Similar ar-
guments may allow to show that 3) is an equivalent statement (we will give an
alternative proof of that later). It remains to show that S is dense in M. According
to Lemma 3.1.8 we may perturb Ay and assume that f), has a superattracting cycle
of period bigger than 3 which persists, as an attracting cycle, for A close enough
to Ag. If Ag is still active, Picard-Montel’s Theorem shows that a new perturbation
guarantees that a critical point falls in the attracting cycle and, therefore, becomes
passive. Since the number of critical points is finite, we may make all critical points
passive after a finite number of perturbations. O

Example 3.1.10 In the quadratic polynomial famaily, the bifurcation locus is the
boundary of the connectivity locus (or the Mandelbrot set). Indeed, it follows imme-
dialey from the definition 2.3.2 of the Mandelbrot set that its boundary is the activity
locus.

Example 3.1.11 The situation is more complicated in the family (Pc,a)(c a)eCd-1

of degree d poynomials when d > 3 (see subsection 2.1.2). Indeed, Theorem 2.3.5
shows that the bifurcation (i.e. activity) locus is not bounded since it coincides with
the boundary of Up<i<q—2B; (where B; is the set of parameters for which the orbit of
the critical point ¢; is bounded) while the connectedness locus No<i<a—2B; is bounded.

Although we shall not use it, we end this section by quoting a very interesting
classification of the activity situations which is due to Dujardin and Favre (see [DF]
Theorem 4).

Theorem 3.1.12 Let (f\),cp be a holomorphic family of degree d rational maps
with a marked critical point ¢(\). If ¢ is passive on some connected open subset U
of M then exactly one of the following cases holds:

1) c is never preperiodic in U and the closure of its orbits move holomorphically
on U

2) c is persitently preperiodic on U

3) the set of parameters for which c is preperiodic is a closed subvariety in U.
Moreover, either there exists a persistently attracting cycle attracting ¢ through-
out U, or c lies in the interior of a linearization domain associated to a per-
sistent 1rrationally neutral periodic point.

It is worth emphasize that the proof of that result relies on purely local, and
subtle, arguments.
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3.1.3 Some remarkable parameters

e As we already mentionned, the basin of any attracting cycle of a rational map
contains a critical point. As a consequence, any rational map of degree d has at
most 2d — 2 attracting cycles. Then, using perturbation arguments, Fatou and Julia
proved that the number of non-repelling cycles is bounded by 6d — 6. The sharp
bound has been obtained by Shishikura [Sh] using quasiconformal surgery, Epstein
has given a more algebraic proof based on quadratic differentials (see [Eps2]).

Theorem 3.1.13 A rational map of degree d has at most 2d—2 non-repelling cycles.

In particular, any degre d rational map cannot have more than 2d — 2 neutral
cycles. Shishikura has also shown that the bound 2d—2 is sharp (we will give another
proof, using bifurcation currents, in subsectiondensShiHyp). Let us mention that
the Julia set of degree d maps having 2d — 2 Cremer cycles coincides with the full
Riemann sphere. These results motivate the following definition.

Definition 3.1.14 The set Shi of degree d Shishikura rational maps is defined by
Shi={f € Raty / f has2d — 2 neutral cycles}.

In a holomorphic family (fx)\cp, we shall denote by Sri(M) the set of parameters A
for which fy is Shishikura.

According to Theorem 3.1.9, one has Sni C Bit. In the last chapter, we will
obtain some informations on the geometry of Shi and, in particular, reprove that Shi
is not empty.

e Any repelling cycle of f € Raty is an invariant (compact) set on which f is
uniformly expanding. Some rational map may be uniformly expanding on much
bigger compact sets. Such compact sets are called hyperbolic and are necessarily
contained in the Julia set. A rational map which is uniformly expanding on its Julia
set is said to be hyperbolic. Let us give a precise definition.

Definition 3.1.15 Let f be a rational map. A compact set K of the Riemann
sphere is said to be hyperbolic for f if it is invariant (f(K) C K) and f is uniformly
expanding on K: there exists C' > 0 and M > 1 such that

[(f")(2)]e > CM"; Yze K, ¥n>0.

It may happen that a critical orbit is captured by some hyperbolic set and, in
particular, by a repelling cycle. Such rational maps play a very important role in
the study of the parameter space. The reason is that they allow to define transfer
maps which carry some informations from the dynamical plane to the parameter
space. A particular attention will be devoted to maps for which all critical orbits
are captured by a hyperbolic set.
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Definition 3.1.16 The set Mis of degree d Misiurewicz rational maps is defined by
Mis={f € Raty / all critical orbits of [ are captured by a compact hyperbolic set}

When the hyperbolic set is an union of repelling cycles the map s said to be strongly
Misiurewicz and the set of such maps is denoted Miss. In a holomorphic family
(f\)rens we shall denote by Mis(M) (resp. Miss(M)) the set of parameters A for
which fy is Misiuerewicz (resp. strongly Misiurewicz).

Within a holomorphic family (fy),c,,, one may show that a critical point whose
orbit is captured by a hyperbolic set and leaves this set under a small perturbation is
active. In particular, we have the following inclusion: Mis C Bit. To prove this, one
first has to construct a holomorphic motion of the hyperbolic set and then linearize
along its orbits (see [G]). When the hyperbolic set is a cycle, the motion is given by
the implicit function theorem and the linearizability is a well known fact.

Lemma 3.1.17 Let (f\),cy, be a holomorphic family of degree d rational maps
with a marked critical point c¢(\). Assume that f\ has a repelling n-cycle R(\) :=
{2, A(z0), - [T (=)} for X € UL If f5 (c(No) € R(Ao) for some Ao € U but not
for all X € U then c(\) is active at \g.

Proof. We may assume that n = 1 which means that z, is fixed by f\. Shrinking
U and linearizing we get a a family of local biholomorphisms ¢, which depends
holomorphically on A and such that ¢,(0) = 2z, and fy o @r(u) = mrpa(u) (see [BM]
Théoreme I1.1 and Remarque 11.2). As z, is repelling, one has |m,| > 1. Let us set
u(N) = ¢5 (fE(e(N)), then f27(cy) = f2 (ox(u(N)) = myu(N) which shows that

PHE(cy) is not normal at \g since, by assumption, u(\e) = 0 but u does not vanish
identically on U.

O

e As we already mentionned, a rational map which is uniformly expanding on its
Julia set is called hyperbolic. From a dynamical point of view, the study of such
maps turns out to be much easier.

Definition 3.1.18 The set Hyp of degree d hyperbolic rational maps is defined by
Hyp={f € Raty | f is uniformly expanding on its Julia set}.

In a holomorphic family (fx),c,, we shall denote by Hyp(M) the set of parameters
A for which fy is hyperbolic.

There are several characterizations of hyperbolicity. One may show that a ra-
tional map f is hyperbolic if and only if its postcitical set does not contaminate its
Julia set:

[ is hyperbolic < U,>of"(Cs) N T = 0.
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As a consequence, in any holomorphic family (fy),c,,, hyperbolic parameters
are stable : Hyp(M) C S. This characterization also implies that a hyperbolic map
has only attracting or repelling cycles.

The Fatou’s conjecture asserts that the hyperbolic parameters are dense in any
holomorphic family, it is an open problem even for quadratic polynomials. According
to Mané-Sad-Sullivan Theorem it can be rephrased as follows

Fatou’s conjecture 3.1.19 Hyp(M) = S for any holomorphic family (fx)\cp-

let us also mention that Mané, Sad and Sullivan have shown that hyperbolic
and non-hyperbolic parameters cannot coexist in the same stable component (i.e
connected component of S).

Although the bifurcation locus of the quadratic polynomial family is clearly ac-
cumulated by hyperbolic parameters, this is far from being clear in other families
and seems to be an interesting question. In the last chapter we will show that pa-
rameters which, in some sense, produce the strongest bifurcations, are accumulated
by hyperbolic parameters.

3.2 Potential theoretic approach

3.2.1 Przytycki’s generalized formula

We want here to establish a fundamental formula which relates the Lyapunov ex-
ponent (see definition 1.3.1) and the critical points. The model is a formula due to
Przytycki which deals with the case of polynomials.

Theorem 3.2.1 (Przytycki’s formula) Let P be a unitary degree d polynomial,
L(P) its Lyapunov exponent and gp its Green function. Then

L(P)=Ind+ > gp(c)

where the sum is taken over the critical points of P counted with multiplicity.

Proof. Let us write ¢y, ¢, - - -, c4_1 the critical points of P. Then
d—1 d—1
L(P) :/ In|P'| pp :/ ln|dH(z— ci)l pp = lnd+2/ In|z —¢j| pp.

Now, since pup = dd°gp, the formula immediately follows by an integration by parts.
0
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Remark 3.2.2 As the Green function gp of a polynomial P is positive (see Propo-
sition 1.1.12) the above formula implies that L(P) > Ind.

It is more delicate to perform such an integration by part in the case of a rational
map f. To this purpose we will work in the line bundle Op:1 (D) for D := 2(d — 1)
which we endow with two metrics, the flat one ||[z,z]|lo and the Green metric
[z, ]|lc, whose potential is the Green function G of some lift ' of f (see subsec-
tion 1.3.1).

In this general situation the integration by part yields the following formula.

Proposition 3.2.3 Let f be a rational map of degree d > 2 and F be one of its
lifts. Let D :=2(d — 1) and Jacp be the holomorphic section of Op1(D) induced by
det F'. Let gr be the Green function of F on P and p; be the Green measure of f.
Then

L(f) +1Ind = fPl gF[Cf] - 2(d_ 1) fpl gF(Mf+w) + fPl lrl||<]aCF||O w.

Proof. Let us recall that || - ||¢ = e P97 - ||op. According to Lemma 1.3.4 we have:

Luy+md:/i

In||Jacp|lgp pr :/ In||Jacr| g, dngF+/ In||Jacrl|lgp w
p! p! p!

which, after integrating by parts, yields

L) +d= [ ge(ad ] Jacele,) + [ Inlacr]a, o
P P

and by Poincaré-Lelong formula:

Mﬁ+md:/

Pl

e ((C) = D)+ [ (nllJacelo = Doe) w. (3.2
(]

When working with a holomorphic family of polynomials (Py),,, Przytycki’s for-
mula says that the Lyapunov function L(Py) and the sum of values of the Green
function on critical points differ from a constant. In particular, L(P,) is a p.s.h
function on M and these two functions induce the same (1,1) current on M. It
is then rather clear, using Mané-Sad-Sullivan Theorem 3.1.9, that this current is
exactly supported by the bifurcation locus.

We aim to generalize this to holomorphic families of rational maps and will
therefore compute the dd® of the left part of formula 3.2.1. The following formula
has been established in [BB1].
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Theorem 3.2.4 Let (fy),, be a holomorphic family of degree d rational maps which
admits a holomorphic family of lifts (F\),;. Let py (resp ppr) be the canonical
projection from M x P! onto M (resp.P!). Then

dd°L(N) = (par). (A5 .0(2) + @) A [C]) (3:22)

where C' == {(\,z) € M x P! | 2 € C)\}, gx is the Green function F\ on P!, L())
the Lyapunov exponent of fx and & := ppiw.
Moreover, the function \ — fPl ga(pn + w) is pluriharmonic on M.

Proof. We may work locally and define a holomorphic section Jacy of Op1(D) in-
duced by det F}. Then Jac(\, [2]) := (X, Jaca([#])) is a holomorphic section of the
line bundle M x Op1(D) over M x P!,

Let us rewrite Proposition 3.2.3 on the form L(\)+1Ind = H(\) — D B(\) where
H(X) := [p1 9a[C\] + [piIn||Jacyllo w, B(A) := [p1 ga(pn +w) and D :=2(d — 1).

We first compute dd°H. Let ® denote a (m — 1,m — 1) test form where m is
the dimension of M. Then (dd°H,®) = I, + I, where I, := [, dd°® [, gA[C)] and
I = [,,dd°® [5, In || Jacylo w.

Slicing and then integrating by parts, we get

= [ e [ GlCh = [ ) @ ®) i) -
_ /M ()@ ndig A [C],

Similarly and then using Poincaré-Lelong identity dd°In ||ja/c||0 = [C] — D& one
gets

L= / dd°® / ln ||Jac||0 w) = / (par)”* (dd°®) A 1In ||32L/c||0 0=
p! MxPt

_/ (par)* (ID/\ddClnHJacHO/\w—/ (par)*® A G A [C].
MxP1

MxP1

This shows that dd°H = (par), ((ddS .gx(2) + @) A [C]).

It remains to show that dd°B = 0. It seems very difficult to prove this by
calculus, we will use a trick which exploits the dynamical situation. If one re-
place the family (f)),, by the family (f),, then L becomes 2L and dd°H becomes
2dd°H while B is unchanged. Thus, applying Proposition 3.2.3 to (f)),, and taking
dd® yields dd°L = dd°H — 2(d — 1)dd°B but, with the family (f7),,, this yields
2dd°L = 2dd°H — 2(d* — 1)dd°B. By comparison one obtains dd°B = 0. O

46



Remark 3.2.5 In [BBI] the formula 3.2.2 has been generalized to the case of holo-
morphic families of endomorphisms of P*. It becomes

dd°L(\) = (par). ((ddS_gx(2) + @)F A [C))

where L(A) is now the sum of Lyapunov exponents of fy with respect to the Green
MEasure fuy.

3.2.2 Lyapunov exponent and bifurcation current

We have seen with Mané-Sad-Sullivan Theorem 3.1.9 that the bifurcations, within
a holomorphic family of degree d rational maps (f\),c,, are due to the activity of
the critical points (see in particular Lemma 3.1.7). We will use this and the formula
given by Theorem 3.2.4, to define a closed positive (1, 1)-current T on M whose
support is the bifurcation locus and which admits the Lyapunov function as global
potential. Besides, we will also introduce a collection of 2d — 2 closed positive (1,1)-
currents which detect the activity of each critical point and see that the bifurcation
current T 1s the sum of these currents. Here are the formal definitions.

Definition 3.2.6 Let (f),c,, be any holomorphic family of degree d rational maps.
with marked critical points {c;(N); 1 <1 < 2d —2}. The activity current T; of the
marked critical point c; is defined by

T, = (par)e ((dd59r(2) + @) A [CH]).

where C; is the graph {(\,c;(\); X € M} in M x P! and gy is the Green function
on P! of F\ for some (local) holomorphic family of lifts (Fy).
The bifurcation current Ty s defined by

Tbif = dd°L
where L is the Lyapunov exponent of the family (fx),ep-

We start by giving local potentials for the activity currents.

Lemma 3.2.7 Let F) be a local holomorphic family of lifts of f\ and G be the
Green function of Fy. Let ¢;(X) be a local lift of ¢;(X). Then Gy (¢;(N)) is a local
potential of T;.

Proof. This is a straightforward computation using the fact that, for any local sec-
tion o of the canonical projection 7 : C? \ {0} — P!, the function G, (c(2)) is a
local potential of ddS ,gx(z) + @ (see Proposition 1.1.6). 0

The following result has been originally proved by DeMarco in [DeM1], [DeM2].
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Theorem 3.2.8 Let (f\),cy be any holomorphic family of degree d rational maps
with marked critical points {c;(\); 1 < i < 2d — 2}. The support of the activity
current T; 1s the activity locus of the marked critical point c;.

The support of the bifurcation current Tyy is the bifurcation locus of the family

(f/\))\eM and Ty = ?d_QTi.

Proof. Let us first show that ¢; is passive on the complement of Supp T;. If T; = 0 on
a small ball B C M then, by Lemma 3.2.7, G (¢;())) is pluriharmonic and therefore
equal to In|h;(\)| for some non-vanishing holomorphic function h; on B. Replacing

¢(A) by /Z((i)) one gets, thanks to the homogeneity property of G, (see Proposition

1.1.6), G (¢;(A\)) = 0. This implies that
{Fe(N) /n>1,X € B} CUxpG,'{0}

which, after reducing B, is a relatively compact subset of C2. Montel’s theorem
then tells us that (F}(¢;()))),, and thus (f{(c;(A))), are normal on B.

Let us now show that T} vanishes where ¢; is passive. Assume that a subsequence
(fX*(ci(N))),, is uniformly converging on a small ball B C M. Then we may find a
local section o of 7 : C?\ {0} — P! such that F\*(&(A\)) = hy, (A) - 00 f15(c;(N)
where h,, is a non-vanishing holomorphic function on B. As G o F\ = dG) (see
Proposition 1.1.6), this yields

GA(E(N) =d ™ ( In|h,, (A)|+Grooo ff’“(cl()\)))
which, after taking dd® and making k — +o0o, implies that T; vanishes on B.

That dd°L = Ty = fd_Q T; follows immediately from Theorem 3.2.4. Then,
Mané-Sad-Sullivan Theorem 3.1.9 implies that the support of Ti is the bifurcation
locus. O

It is important to stress here that the identity dd°L = T = fd_2Ti may
be seen as a potential-theoretic expression of Mané-Sad-Sullivan theory. More con-
cretely, the expression Ty = dd°L will be used to investigate the set of parameters
Shi while the expression Ty = ?diQ T; will be used for the parameters Mis (see
subsection 3.1.3).

In the next chapters, we will deeply use the fact that the Lyapunov function is a
potential of Ty, together with the approximation formula 1.3.7, to analyse how the
hypersurfaces Per,(w) may shape the bifurcation locus.

The continuity of the Lyapunov function will turn out to be extremely useful for this
study. Mané was the first to establish the continuity of the Lyapunov function L
(see [Maii]) , using Theorem 3.2.4 and Lemma 3.2.7 one may see that this function
is actually Holder continuous.

Theorem 3.2.9 The Lyapunov function of any holomorphic family of degree d ra-
tional maps s p.s.h and Holder continuous.
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Proof. According to Theorem 3.2.4 and lemma 3.2.7 the functions L and »_ G5(¢;(N))
differ from a pluriharmonic function. The conclusion follows from the fact that G (z)
is Holder continuous in (A, z) (see [BB1]| Proposition 1.2.). 0

3.2.3 DeMarco’s formula

Using Theorem 3.2.4 we will get an explicit version of the formula given by Propo-
sition 3.2.3. This result was first obtained by DeMarco who used a completely
different method. We refer to the paper of Okuyama [O] for yet another proof.

The key will be to compute the integral fPl gr (pty +w) which appears in the
formula given by Proposition 3.2.3. To this purpose we shall use the resultant of a
homogeneous polynomial map F of degree d on C?. The space of such maps can
be identified with C2?*2. The resultant Res F of F polynomialy depends on F
and vanishes if and only if F is degenerate. Moreover Res (2¢,24) = 1 and Res is
2d-homogeneous: Res aF = a*® Res F.

Lemma 3.2.10 [, gr (15 +w) = m In|Res F| — 2

Proof. The function B(F) := [, gr (s + w) is well defined on C?**+2\ ¥ where ¥ is
the hypersurface where Res vanishes. Moreover, according to Theorem 3.2.4, B is
pluriharmonic. As B is locally bounded from above, it extends to some p.s.h function

through 3. Then, by Siu’s theorem, there exists some positive constant ¢ such that

dd°B(F) = ¢ dd°In|ResF| which means that B — c¢ln|ResF| is pluriharmonic on
C2d+2

Let ¢ be a non-vanishing holomorphic function on C?¥*2 such that
B —cln|ResF| = In|y|.

Using the homogeneity of Res and the fact that B(aF) = 21 Inla| + B(F) (one
easily checks that g,p = dT11 In|a| 4+ gr) one gets:

p(aF)| = |aa-1~2

Making a — 0 one sees that ¢ = and ¢ is constant. To compute this constant

1
a(d-1)
one essentially tests the formula on Fy := (z{, 24) (see [BB1] Proposition 4.10). O

We are now ready to prove the main result of this subsection.

Theorem 3.2.11 Let f be a rational map of degree d > 2 and F be one of its
lifts. Let Gp be the Green function of ' on C* and Res F the resultant of F. If

L . 2d—2 A
C1,Coy - v+, Cog_g are chosen so that detF'(z) = Hj:1 ¢; N\ z then
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2d—2
. 2
L(f)+Ind=> Gp(&) — S In|Res F|.

j=1

Proof. Taking Lemma 3.2.10 into account, the formula given by Proposition 3.2.3
becomes

L(f)+Ind = [5. 9r[Cs] — 2(d—1) (ﬁlnﬁ%es F —%) + Jpir In || Jacp|lo w.

Observe that w = m,m where m = (dd°In™ || - H)2 is the normalized Lebesgue
measure on the euclidean unit sphere of C2. Then

fc2 In |detF’'| m = fc? In (e’D”'”\detF’D m = fc2 In||Jpon|lo m = [p In||Jacp||o w.

Let us pick U; in the unitary group of C? such that Uj_l(éj) = (]|¢;]|,0). Then
U;j(2) A é; = —2||¢;]] and, since [, In|2zp| m = —3 one gets

Jor In [ Jacillo w = [ |detF'| m =3, [ n|U;(2) Ayl = 5, 116,11 = (d — 1),

On the other hand, o gr[Cs] = 3, g 0 7(&) = 3, Gr(é;) — 3,10 &) and the

conclusion follows. O
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Chapter 4

Equidistribution towards the
bifurcation current

4.1 Distribution of critically periodic parameters

The aim of this section is to present a result due to Dujardin and Favre (see [DF])
about the asymptotic distribution of degree d polynomials which have a pre-periodic
critical point. We will work in the context of polynomial families, this will allow us
to modify the original proof and significantly simplify it. We refer to the paper of
Dujardin-Favre for a proof working in any holomorphic family of rational maps.

4.1.1 Statement and a general strategy

We work here in the family (an) (ca)eCi-1 of degree d polynomials which has been

introduced in the subsection 2.1.2. Let us recall that P, , is the polynomial of degree
d whose critical points are (0 = cg, ¢y, - - -, ¢4_2) and such that P, ,(0) = a?.

For 0 <i<d—2and 0 <k < n, we denote by Per(i,n, k) the hypersurface of
C9! defined by

Per(i,n, k) :== {(c,a) € C*1 / Pr (c;) = Pclfa(cl-)}.

The results we want to establish is the following; it has been first proved by
Dujardin and Favre in [DF]

Theorem 4.1.1 In the family of degree d polynomials, for any sequence of integers
(kn)n such that 0 < k,, < n one has Z?;g lim,, d="[Per(i, n, k)| = T

Let us now explain the principle of the proof and fix a few notations. To simplify,
we shall write \ the parameters (c,a) € C% L.
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The bifurcation current Ty is given by Ti;e = Zf:_g ddgx(c;) (see Lemma 3.2.7)
where g, is the Green function of Py (see the subsection 2.3.1). It thus suffices to
show that for any fixed 0 <17 < d — 2 the following sequence of potentials

hp(A) == d " In| P (¢;) — Pf"(cl)|

converges in L. to g\(¢;).

To this purpose we shall compare these potentials with the functions
gn(N) :=d " Inmax (1, |PP(c;)|)

which do converge locally uniformly to gy (c;).

The first important point is to check that the sequence (h,,), is locally uniformly
bounded from above. We shall actually prove a little bit more.

Lemma 4.1.2 For any compact K C C4! and any € > 0 there exists an integer
no such that hy |k < gn|x + € for n > ng.

Proof. 1t is not difficult to see that there exists R > 1 such that
(1=l < [PR(2) < (1 +e)]2|” (4.1.1)

for every A € K, every n € N and every |z| > R.
We now proceed by contradiction and assume that there exists A\, € K and
np — 400 such that hy,(A,) > gn,(Ap) + €. This means that

Np knp ed™r Np
[Py (i) = P)7 ()| > e ¥ max (1, P, (ci)]). (4.1.2)

Let us set B, := Pf:"(ci). By 4.1.2 we have lim, | B,| = +o0 and thus |B,| > R for
p big enough. Then, using 4.1.1, one may write

n n 7k‘n np—kn
Py (¢;) = P/\pp "(By) = (upBy)*" "
where (1 —€) < |upy| < (1 + €) and the estimate 4.1.2 becomes

(upBy) ™" = By| > e [u, B, |

This is clearly impossible when p — 4-0c0. ad

To prove that (h,), converges in L}, . to gx(c;) we shall use a well known com-
pactness principle for subharmonic functions:

Theorem 4.1.3 Let (p;) be a sequence of subharmonic functions which is locally
uniformly bounded from above on some domain Q C R™. If (¢;) does not converge
to —oo then a subsequence (pj,) converges in Lj,.(Q) to some subharmonic function
@. In particular, (p;) converges in Li,.(Q) to some subharmonic function ¢ if it
converges pointwise to .
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We will also need to following classical result

Lemma 4.1.4 (Hartogs) Let (v;) be a sequence of subharmonic functions and g be
a continuous function defined on some domain @ C R". Iflimsup; p;(z) < g(x) for
every x € () then, for any compact K C  and every e > 0 one has pj(x) < g(x)+€
on K for j big enough.

By Lemma 4.1.2 the sequence (hy,), is locally uniformly bounded from above
and therefore, according to the Theorem 4.1.3, we have to check that (h,), does not
converge to —oo and that gy(¢;) is the only limit value of (h,,), for the L}, conver-
gence. To prove this unicity statement we will combine the following maximum-type
principle with our knowledge of the behaviour of the bifurcation locus at infinity in

polynomials families (see Theorem 2.3.5).

Lemma 4.1.5 Let o, be two p.s.h functions on C*. Assume that:
i) 1 is continuous
i) o <Y
iii) Supp (dd°p) C Supp (dd“y)
w) ¢ =1 on Supp (dd))

v) for any \g € CF there exists a complex line L through A\ such that ¢ =1 on
the unbounded component of L'\ (L N Supp (ddt))).

Then ¢ = 1.

Proof. Because of iv), we only have to show that ¢(Ag) = 1(A\g) when Ag lies in the
complement of Supp (dd“¢)). According to (v), we may find a complex line L in C*
containing \g and such that ¢ and ¢ coincide on the unbounded component €2, of
L\ (LN Supp (dd°¢)). We may therefore assume that Ao & Qu. By i), iii) and iv)
¢l coincides with the continuous function ¥|;, on Supp Ap|, which, by the conti-
nuity principle, implies that |, is continuous. Let €y be the (bounded) component
of L\ (LN Supp (dd“t))) containing Ag. The continuous function (¢ — )|, vanishes
on by (see iv)), is harmonic on €y (see iii) and iv)) and negative (see ii)). The
maximum principle now implies that ¢(Ag) = 1(\g). O

The following technical lemma will play an important role in the proof of Theo-
rem 4.1.1. It shows in particular that (h,), doest not converge to —oo.

Lemma 4.1.6 If c; belongs to some attracting bassin of Py, then there exists a
neighbourhood Vo of Ao such that sup,, supy, (hn — gn) > 0.
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Proof. If Vj is a sufficently small neighbourhood of A\ then P}(¢;) — ay where a, is
an attracting cycle of Py for every A € V. We will assume that Py(ay) = a.
Let us now proceed by contradiction and assume that there exists ¢ > 0 such that

1Py (c;) — Py (c;)] < e max (1,|PY(c))]), VA€ Vg, Vn. (4.1.3)
Since P{(¢;) — ay, 4.1.3 would imply
|P(c;) — Pir(cy)] < Ce™" ) WA €V, Vn. (4.1.4)

The estimate 4.1.4 implies that a) is a super-attracting fixed point for any A € 1
which, in turn, implies that ay = oo for all A € V4. But in that case we would have
|PY(c;)] < L|P(e;)| for n big enough and the estimate 4.1.3 would be violated. O

4.1.2 Proof of Theorem 4.1.1

We use here the notations introduced at the beginning of the previous subsection.
According to Theorem 4.1.3 we have to show that g := gx(¢;) = lim g, is the only

limit value of the sequence (h,), for the L} convergence (by Lemmas 4.1.2 and

4.1.6, this sequence of p.s.h functions is locally uniformly bounded and does not
converge to —oo). Assume that (after taking a subsequence!) h,, is converging in
L} to h. To prove that the functions h and g coincide we shall check that they

loc
satisfy the assumptions of Lemma 4.1.5.

Our modification of the original proof essentially stays in the third step.
First step: h < g.

Let By be a ball of radius r centered at Ay and let ¢ > 0. By the mean value
property we have

h(ho) < i [, b= limy, ok [ By

but, according to Lemma 4.1.2, h,, < g, + € on By for n big enough and thus

. 1 _ 1
h(X) < e—l—hmnmeogn =e+ ﬁfBog.
As g is continuous, the conclusion follows by making » — 0 and then ¢ — 0.
Second step: h = g on Supp dd°g.
Combining Lemma 4.1.6 and the result of first step we will first see that (h — g)
vanishes when ¢; is captured by an attracting basin.

Suppose to the contrary that c¢; is captured by an attracting cycle of P, and
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(h—g)(X\o) < 0. As the function (h — g) is upper semi-continuous, we may shrink
Vo so that (h —g) < —e < 0 on V5. Now, as ¢; is passive on Vj, the function
(h — g) is p.s.h on Vj and, after shrinking V{ again, Hartogs Lemma 4.1.4 implies
that (h, — gn) < —5 on V; for n big enough. This contradicts Lemma 4.1.6.

Now, if A\g € Supp dd°g then Ay = limy A\ where )\, is a parameter for which ¢;
is captured by some attracting cycle (see Lemma 3.1.8). As (h — g) is uper semi-
continuous we get (h — g)(A\g) = 0.

Third step: Supp dd°h C Supp dd°g.

Let © be a connected component of C4~1\ Supp dd°g. We have to show that h
is pluriharmonic on 2. We proceed by contradiction. If dd°h does not vanish on {2
then there exists some ng for which the hypersurface

H = {P(c;) — P{™(c;) = 0}

meets (2. When A\ € H then ¢; is captured by a cycle since ano(ci) =: z(\) satisfies
Po(2(N) = P o PI™(¢;) = PL™(¢;) = 2(X) for mg = ng — ky, > 0.

Let us show that z(\) is a neutral periodic point. We first observe that the
vanishing of dd°g on {2 forces z(A) to be non-repelling and thus |(P)T\”°)/(z()\))| <1
on H N K.

Let us now see why z(A) cannot be attracting. If this would be the case then,
according to Lemma 4.1.6, we would have h(\g) = g(Ao) for a certain \g € H N Q.
As (h — g) is negative and p.s.h on 2 this implies, via the maximum principle, that
h = g on 2. This is imposible since ddh is supposed to be non vanishing on (2.
We thus have (P;\”O)/(z()\)) = ¢ on HNQ and therefore z()\) belongs to a neutral
cycle whose period divides mg and whose multiplier is a root of ™.

In other words, H N €2 is contained in a finite union of hypersurfaces of the form
Per,, (¢?). This implies that

H C Per,, (e0).

for some integer ng and some real number 6.

Finally, using a global argument, we will see that this is impossible. Let us recall
the following dynamical fact.

Lemma 4.1.7 Fvery polynomial which has a neutral cycle also has a bounded, non-
preperiodic, critical orbit.

Thus, when A € H, the polynomial P, has two distinct bounded critical or-
bits; the orbit of ¢; which is preperiodic and the orbit of some other critical point
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which is given by the above lemma. This shows that H cannot meet the line
{co =¢1 =+ = cqo = 0} := My since the corresponding polynomials (which
are given by ézd +a? a € C) have only one critical orbit. We will now work in
the projective compactification of C?~! introduced in subsection 2.1.2. By Theorem
2.3.5, H and M, cannot meet at infinity. This contradicts Bezout’s theorem.

Fourth step: for any \g € C%! there exists a complex line L through A\ such
that h = ¢ on the unbounded component of L\ (L N Supp(ddcg)).

Here one uses again Theorem 2.3.5 to pick a line L through Ay which meets
infinity at some point {y ¢ Supp dd¢g. Then, for any A in the unbounded component
of L'\ (L N Supp (ddcg)) the critical point ¢; belongs to the super-attracting basin
of oo and thus, as we saw in second step, h(A) = g(\). 0.

4.2 Distribution of rational maps with cycles of a
given multiplier

Let f: M x P! — P! be an arbitrary holomorphic family of degree d > 2 rational
maps.

We want to investigate the asymptotic distribution of the hypersurfaces Per, (w)
in M when |w| < 1. Concretely, we will consider the current of integration [Per,, (w)]
or, more precisely, the currents

[Per,,(w)] := dd® In |p, (A, w)]

where p,(-,w) are the canonical defining functions for the hypersurfaces Per, (w)
given by Theorem 2.2.1. We ask if the following convergence occurs:

lim,, din[Pern(w)] = Thir.
The question is easy to handle when |w| < 1, more delicate when |w| = 1 and widely

open when |w| > 1.

4.2.1 The case of attracting cycles

We aim to prove the following general result result (see [BB2])

Theorem 4.2.1 For any holomorphic family of degree d rational maps (f,\))\eM one
has d~" [Per,(w)] — Ty when |w| < 1.

Proof. Let us set

Lo\ w) = d7" Inp, (A, ).
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Since, by definition, Ty = dd® L(A\) where L(A) be the Lyapunov exponent of
(P!, fn, 1) and py is the Green measure of fy, all we have to show is that L,

converges to L in L} (M). Here again we shall use the compactness principle for

subharmonic functions (see Theorem 4.1.3).

The situation is purely local and therefore, taking charts, we may assume that
M = CF. We write the polynomials p,, as follows :

Ng(n)

PN w) =: H (w — ww-()\)).

i=1
Using use the fact that d""Ng(n) ~ L (see Theorem 2.2.1) one sees that the se-

quences L, is locally uniformly bounded from above.

According to Theorem 2.2.1, the set {wy, j(A) / wy;(A) # 1} coincides with the
set of multipliers of cycles of exact period n (counted with multiplicity) from which
the cycles of multiplier 1 are deleted. We thus have

Na(n)
> g == ST (Y ) (4:2.)

PER;(N)

where R ()\) := {p € P! / p has exact period n and |(f{)(p)| > 1}. Since f\
has a finite number of non-repelling cycles (Fatou’ theorem), one sees that there
exists n(\) € N such that

n > n(A) = |w,;(A)] > 1, for any 1 < j < Ny(n). (4.2.2)

By 4.2.1 and 4.2.2, one gets

Na(n) Na(n) d-n
La0,0) = 4 3 s, (0] = 4 30 0 s, (0] = 5 S ()
j=1 j=1 RL (V)
for n > n(\) which, by Theorem 1.3.7, yields:
lim L, (X, 0) = L(\), YA € M. (4.2.3)
If now [w| < 1, it follows from 4.2.2 that L,(\, w)—L,(A,0) =d™" 3", In %
and In(1 — |w|) < lnm)‘)_“ <In(l+ |w|) for 1 < j < Nyg(n) and n > n(A) . We

wn,;(A)
thus get

7" No(n) In(1 — |w]) < [Lu(Aw) = Lu(A, 0)] < d " Na(n) In(1 + [u])
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for n > n(X). Using 4.2.3 and the fact that d""Ny(n) ~ * we obtain lim,, L, (A, w) =
L(A) for any (A\,w) € M x A. The L}, convergence of L,(-,w) now follows imme-
diately from Theorem 4.1.3. ad

Remark 4.2.2 We have proved that L,(\, w) := d " In|p,(\, w)| converges point-
wise to L(X\) on M when |w| < 1.

The above discussion shows that the pointwise convergence of L, (A w) to L
(and therefore the convergence d~"[Per,(w)] — Ti) is quite a straightforward con-
sequence of Theorem 1.3.7 when |w| < 1. However, when |w| > 1 and A is a
non-hyperbolic parameter, the control of L, (A, w) = d™™ > In|w — w, ;j(\)| is very
delicate because f), may have many cycles whose multipliers are close to w. This
is why we introduce the p.s.h functions L. which both coincide with L,, on the
hyperbolic components and are quite easily seen to converge nicely. These functions
will be extremely helpfull later.

Definition 4.2.3 Let p,(\, w) =: Hj\[:din) (w—wy, (X)) be the polynomials associated

to the family f by Theorem 2.2.1. The p.s.h functions L} are defined by:

Nq(n)
LI w):=d™ Y In" [w—w,;(N)|.

j=1
The interest of considering these functions stays in the next lemma.

Lemma 4.2.4 The sequence L, converges pointwise and in L} . to L on M x C.

For every w € C the sequence L} (-,w) converges in L}, to L on M.

Proof. We will show that L} (-, w) converges pointwise to L on M for every w € C.
As (L}), is locally uniformly bounded, this implies the convergence of L (-, w) in
L} (M) (Theorem 4.1.3) and the convergence of L, in L} (M x C) then follows by

loc loc
Lebesgue’s theorem.

As L,(\,0) = L()\) (see Remark 4.2.2), we have to estimate L (A, w)—L, (), 0) =:
en(A,w) on M. Let us fix A € M, w € C and pick R > |w|. Since fy has a finite
number of non-repelling cycles (Fatou’ theorem), one sees that there exists n(A) € N
such that

n > n(A\) = |w,;j(A)] > 1, for any 1 < j < Ny(n).

We may then decompose €,(\, w) in the following way:
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Wy j(A) —w
O T Wl Y bt
1<wn (W <R+1 |wn,;(A)[>R+1 ™

—d™ > In Jwy ().
1<|wy ;)| <R+1

We may write this decomposition as €, (A, w) =: €,1(\, w)+ €, 2(A, w) —€,1(A, 0).

One clearly has 0 < €, 1(A, w) < d™"Ny(n)In (2R +1) and thus lim, €,1(\, w) =
0. Similarly, lim,, €, (A, w) = 0 follows from the fact that, for |w, ;(\)] > R+ 1 >
|w| + 1, one has:

E L P L LC0) B P Y CLFLC) ]
R+1 |wn,; (V)] |wn,;(A)]
[wn (V)] + R i
< In L <In(1+4 =2,
Lo S R

O

As the functions L, and L,, coincide on hyperbolic components, the above lemma
would easily yield the convergence of d~"[Per,(w)] towards Ty for any w € C if the
density of hyperbolic parameters in M was known. The remaining of this section is,
in some sense, devoted to overcome this difficulty. We shall first do this in a general
setting by averaging the multipiers. Then we will restrict ourself to polynomial
families and, using the nice distribution of hyperbolic parameters near infinity, will
show that d—"[Per,(e"?)] converges towards Ti;.

4.2.2 Averaging the multipliers

Although the convergence of lim,, == [Per,, (w)] to T is not clear when |w| > 1, one
easily obtains the convergence by averaging over the argument of the multiplier w.
The following result is due to Bassanelli and Berteloot [BB2].

Theorem 4.2.5 For any holomorphic family of degree d rational maps (f,\))\eM one
has %= 027T [Per,,(re®)] d§ — Ty, whenr > 0.

Proof.
One essentially has to investigate the following sequences of p.s.h functions

—-n 27
_quy:%;A In |p, (X, re)| df.
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We will see that L7 (\) > C™" where C' only depends on the family and that L7,
converges to L in Lj,.(M).

For that, we essentially will compare L” with L, (\,0) = L? by using the formula

In max(|al, ) = 5= 0% In|a — re?|dd. Indeed, writting

<
3

)
(A w) =: (w — ww-()\))

1

(2

this formula yields

2m
L'(\) = %dn/ 1nH\re — Wy ;(N)|dO = (4.2.4)
" Zlnmax wn (N, 7). (4.2.5)

j
According to Theorem 2.2.1, the set {wy j(A) / w, ;(A\) # 1} coincides with the
set of multipliers of cycles of exact period n (counted with multiplicity) from which
the cycles of multiplier 1 are deleted. Using use the fact that d""Ng(n) ~ + (see
Theorem 2.2.1) one sees that the sequence LT (\) is locally bounded from above

and is uniformly bounded from below by C’lnT’". Since f) has a finite number of
non-repelling cycles (Fatou’ theorem), one sees that there exists n(\) € N such that

n > n(A\) = |w,;j(A)] > 1, for any 1 < j < Ny(n).

Now we deduce from 4.2.4 that for n > n(\):

T
R o
,J

1< wn, ;i (A)|<r

r
LaA0)+d™ Y
<unyer 10ni]

and thus

0< LN~ LaA0)=d™ Y i < d"Ny(n) In* .
< Oyjer [ Wng (V)]

Recalling that d""Ny(n) ~ + and L,(X,0) — L()) (see Remark 4.2.2), this im-
plies that L] converges pointwise to L and, by Theorem 4.1.3, that (L} ),, converges
to L in L} (M ).

loc

Now, to get the conclusion, one has to justify the following identity:
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dd°Lr =<~ 027T [Per,,(re)]do.

2w

For this purpose it suffices to check that In|p,(),7¢e?)| is locally integrable.
Let K be a compact subset of M and ¢, be an upper bound for In|p, (), 7e?)| on
K x [0,27]. Then, the negative function In |p, (), €?)| — ¢, is indeed integrable on
K x [0,27] as it follows from the fact that L7(\) > C2r:

2
/(/ (In|pa (X, 7e™)| = ¢,)dB)dV = 27rd”/ L;dV—%cn/ dv
K 0 K K

> (dnoln—T - cn> o / v,
n K

-n 2

d .
Remark 4.2.6 We have proved that L) (\) := o In [pn (X, 7€)| db is point-
T Jo
wise converging to L(X) on M.

The following result is essentially a potential-theoretic consequence of the former
one. It implicitely contains some information about the convergence of d~" [Per,,(w)]
for arbitrary choices of w but seems hard to improve without using further dynamical
properties (see [BB3]).

Theorem 4.2.7 For family of degree d rational maps (fA) v Ome has

d ddf, I |pa(\ w)] — dd°L())

where p,(-,w) are the canonical defining functions for the hypersurfaces Per;,(w)
given by Theorem 2.2.1.

Proof. Let us set
L,(A\,w) :==d™In|p,(\, w)|.
As we have seen in the two last subsections (see remarks 4.2.2 and 4.2.6)

Ln(M\,0) = L(N)
Ly(A) = Cng 027T In |p, (A, re®)| df — L(A) for any r > 0.

Let us also recall that the function L is continuous on M (see Theorem 3.2.9).
As the functions L,, are p.s.h and the sequence (L, ), is locally uniformly bounded
from above, we shall again use the compacity properties of p.s.h functions given

by Theorem 4.1.3. Since L, (), 0) converges to L()), the sequence (L), does not
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converge to —oo and it therefore suffices to show that, among p.s.h functions on
M x C, the function L is the only possible limit for (L), in L, .(M x C).

Let ¢ be a p.s.h function on M x C and (L,,); a subsequence of (L,), which
converges to ¢ in L}, (M x C). Pick (A\g,wp) € M x C. We have to prove that

loc

©(Xo, wo) = L(N).

Let us first observe that ¢(Ag, wp) < L(Ag). Take a ball B, of radius € and cen-
tered at (Mg, wp) € M x C. By the submean value property and the L], - convergence
of L (see Lemma 4.2.4) we have:

1
@ dm = lim
i |Bl Be

1 1
§lim—/ Li,dm:—/Ldm
i |Bel Jp |Bel /5.

making then € — 0, one obtains ¢(Ag, wy) < L(\g) since L is continuous.
Let us now check that limsup; Ly, (Ao, woe™) = L(Ao) for almost all 6 € [0, 27]. Let
o := |wp|. By Lemma 4.2.4 L} converges pointwise to L and therefore:

limsup Ly, (Ao, woe) < limsup L, (Ao, woe) = L(Ao).
i i ’

(Ao, wo) < Ly, dm

1Bl /.

On the other hand, by pointwise convergence of L7° to L and Fatou’s lemma we
have:

1 2 .
L()\) = li;n L7°(Ag) = lim sup 2—/0 Ln,v()\oﬂ"oew)de <

j T
L[ li L. (No, 7o) db
— imsup L, (Ao, ro€

o J, j P Lin; (Ao, To

and the desired property follows immediately.

To end the proof we argue by contradiction and assume that (Ao, wo) < L(Ag). As
 is upper semi-continuous and L continuous, there exists a neighbourhood Vj of
(Ao, wp) and € > 0 such that

p—L < —e onl.

Pick a small ball By, centered at \g and a small disc A,,, centered at wy such that
By := By, x A, is relatively compact in V5. Then, according to Hartogs Lemma
4.1.4, we have:

limsup (sup(Ly,, — L)) < sup(p — L) < —e.
J Bo ‘ Bo

This is impossible since, as we have seen before, we may find (g, 70¢) € By such
that lim sup; (Ln, (Ao, roe™) — L(Xg)) = 0. O
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Remark 4.2.8 Using standard techniques, one may deduce from the above Theorem
that the set of multipliers w for which the bifurcation current Ty s not a limit of
the sequence d="[Per,(w)] is contained in a polar subset of the complex plane.

4.2.3 The case of neutral cycles in polynomial families

We return to the family (an) (ca)eCi—1 of degree d polynomials. Recall that P, , is

the polynomial of degree d whose critical points are (0 = cg, ¢1, - - -, ¢q—2) and such
that P.,(0) = a? (see subsection 2.1.2).

We want to prove that, in this family, lim, d~"[Per,(w)] = Ty for |w| < 1.
Taking the results of the previous subsection into account (see Theorem 4.2.1), it
remains to treat the case |w| = 1 and prove the following result due to Bassanelli
and Berteloot (see [BB3]).

Theorem 4.2.9 In the family of degree d polynomials lim,, d="[Per,(e")] = Ty for
any 6 € [0, 27].

We will follow a strategy similar to that used for proving Theorem 4.1.1. As we
shall see, the proof would be rather simple if we would know that the bifurcation
locus is accumulated by hyperbolic parameters. This is however not the case when
d > 3 and is a source of technical difficulties (see the fourth step).

Proof. We denote by A the parameter in C?~1 (i.e. X := (c,a)) and set
Ly(A) = d™" In|pa(X, (€°))]

where the polynomials p, (A, w) are those given by Theorem 2.2.1. We have to show
that the sequence (L), converges to L in L}, ..

We have already seen that(L,,), is a uniformly locally bounded sequence of p.s.h
functions on C?~!. Since the family {P.a}(c,a)eci-1 contains hyperbolic parameters,
on which the L,(\) = L (A e?) it follows from Lemma 4.2.4 that the sequence
(Ly), does not converge to —oo. Thus, according to Theorem 4.1.3, we have to

show that L is the only limit value of the sequence (L), for the L}, convergence.

Assume that (after taking a subsequence!) (L), is converging in L}, to ¢. To

prove that the p.s.h functions ¢ and L coincide we shall check that they satisfy the
assumptions of Lemma 4.1.5.

First step: ¢ < L.

63



Since L} (A, e?) converges to L in L} (see Lemma 4.2.4) and L, ()\) < LF()\, )
we get

1 1
o) < —— dm < L dm
Po) < 177 /B 7 =B /B

for any small ball B, centered at A\g. The desired inequality then follows by making
¢ — 0 since the function L is continuous (see Theorem 3.2.9).

Second step: Supp dd®p C Supp dd°L.

Since there are no persistent neutral cycles in the family (Pc,a) (e.a)eCi-17 the hy-
persurfaces Per,(e¢?) are contained in the bifurcation locus. This means that the
functions L,, are pluriharmonic on C4~1\ Supp dd°L. The same is thus true for the
limit ¢.

Third step: for any \g € C%! there exists a complex line D through )\, such
that ¢ = L on the unbounded component of D\ (D N Supp(dd°L)).

By Theorem 2.3.5 we may pick a line D through Ay which meets infinity far from
the cluster set of B; in P,. This means that for any A in the unbounded component
of D\ (L N Supp (ddcg)) all critical point ¢; belongs to the super-attracting basin
of oo and thus, A is a hyperbolic parameter.

This implies that L,(\) = L (), e?) and, by Lemma 4.2.4, p()\) = L(\).

Fourth step: ¢ = L on Supp dd°L.

This is the most delicate part of the proof, it somehow proceeds by induction on
d. To simplify the exposition, we will only treat the cases d = 2 and d = 3.

When d = 2 the parameter space is C and the bifurcation locus is the boundary
bM of the Mandelbrot set. The unbounded stable component (/\/l)C is hyperbolic
and thus, as we saw in the last step, (¢ — L) = 0 there. Since (p — L) < 0 and
(¢ — L) is u.s.c, this implies that ¢ = L on bM = Supp dd°L
Let us stress that this ends the proof when d = 2 (the complex line D of the third
step is the parameter space itself in that case).

We now assume that d = 3, the parameter space is then C?. Let us consider the
sets Uy of parameters which do admit an attracting k-cycle:

Uy = U Perp(w).

We have to show that (¢ — L) coincide on the bifurcation locus. Since the
bifurcation locus is accumulated by curves of the form Per(0) (by Theorem 4.2.1
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limy, d=*[Per;,(0)] = Tii), and the function (¢ — L) is negative and upper semi-
continuous, it suffices to prove that

(o — L) = 0 on all sets U.
Let us first treat the problem on a curve C := Perg(n) for |n| < 1 and show that
(x) the sequence @,|c converges uniformly to L|c on the stable components.

We may assume that C is irreducible and desingularize it. This gives a one-
dimensional holomorphic family (P,r(u))ue v- Keeping in mind that the elements of
this family are degree 3 polynomials which do admit an attracting basin of period
k and using the fact that the connectedness locus in C? is compact (see Theorem
2.3.5), one sees that the family (Prq))uer enjoys the same properties than the
quadratic polynomial family:

1- the bifurcation locus is contained in the closure of hyperbolic parameters

2- the set of non-hyperbolic parameters is compact in M.

Exactly as for the quadratic polynomial family this implies that the sequence L,,
converges in Lj,. to L and the convergence is locally uniform on stable components
since, as we already observed, the functions L,, are pluriharmonic there.

We now want to show that ¢ = L on any open subset U,. Again, as the stable
parameters are dense and (¢ — L) is w.s.c and negative, it suffices to show that
@ = L on any stable component of Uy. On such a component the functions L, are
pluriharmonic and thus actually converge locally uniformly to ¢. Then, (x) clearly
implies that ¢ = L on (.

O

4.3 Laminated structures in bifurcation loci

4.3.1 Holomorphic motion of the Mandelbrot set

We work here in the moduli space Mod, of degree two rational maps which, as we
saw in section 2.1.3, can be identified to C2. Our aim is to show that the bifurcation
locus in the region

Uy := {\ € C?/f, has an attracting fixed point}

can be obtained by holomorphically moving the boundary bM of the Mandelbrot
set . We remind that bM is the bifurcation locus of Pery(0) which is a complex line
contained in U; and can be identified to the family of quadratic polynomials.

We will see simultaneoulsly that the bifurcation current is uniformly laminar in the
region U;. Let us first recall some basic facts about holomorphic motions.
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Definition 4.3.1 Let M be a complex manifold and E C Mbe any subset. A holo-
morphic motion of E in M is a map

o:ExA3(z,u) = o(z,u) =0,(2) € M
which satisfies the following properties:
i) oo = Id|g
ii) E > zw— 0,(2) € M is one-to-one for every u € A

iii) A > uw o,(2) € M is holomorphic for every z € E.

When the family of holomorphic discs in M enjoys good compactness proper-
ties, any holomorphic motion extends to the closure. In particular, when M is the
Riemann sphere C, the Picard-Montel theorem combined with Hurwitz lemma eas-
ily leads to the following famous extension statement. This result is usually called
A-lemma since the "time” parameter is denoted A rather that ¢ (see Lemm a 3.1.3).

The main result of this subsection is the following. The prove we present here is
due to Bassanelli and Berteloot (see [BB2]).

Theorem 4.3.2 Let (2, be the union of all hyperbolic components of the Mandel-
brot set M and © the main cardioid. Let Bif be the bifurcation locus in Uy and
Thvifl, be the associated bifurcation current. Let py be the harmonic measure of M.
There exists a continuous holomorphic motion

o ((thp\@)UbM) XA—)Ul

such that
o (bM x A) = Bisy and Tyiflv, = / [o(z, A)] p11-
Peri(0)

In particular, Bif is a lamination with py as transverse measure. Moreover, the
map o 1s holomorphic on (thp\@) X A and preserves the curves Per,(w) forn > 2
and |w| < 1.

Proof.
First step: Holomorphic motion of (thp \ Q?).

The curve Per;(0) is actually the complex line A; = 2. We will write (2, \g) =: 2
the points of this line.

Let us consider U, := {\ € C?/f, has an attracting cycle of period n} and
Q, := U, N Pery(0). We recall that €, = QU U7122 Q,.
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Let us also set U, ; := U, NU;. By the Fatou-Shishikura inequality, a quadratic
rational map has at most two non-repelling cycles. Thus U,; N U, = 0 when
n # m and there exists a well defined holomorphic map

wn:Un,l_)AXA

which associates to every A € U, ; the pair (w,(X), w;()\)) where w,(\) is the mul-
tiplier of the attracting n-cycle of A and w; () the multiplier of its attracting fixed
point.

The key point is the following transversality statement due to Douady and Hub-
bard (see also [BB1]):

Lemma 4.3.3 the map ¢ induces a biholomorphism
wn,j : Un,l,j — A x A
on each connected component Uy, 1 ; of Uy 1.

The connected components €2, ; of €2, coincides with U, ; N Per;(0) and one
clearly obtains a holomorphic motion o : (thp \ Q?) x A — U; by setting:

0(2,1) == (tn;) " (wn(2).1)

for any z € Q,, ;.
Second step: extension of o to bM.

The key point here is that o(z,t) =: (a(z,t), 5(z,t)) belongs to the complex line
Pery(t) which, according to Proposition 2.2.9, is given by the equation

Thus o(z,t) is completely determined by 5(z,t):

ax(t) = (tBa(t) + 2 +2), VteA. (4.3.1)

14+ ¢2

We will now identify Per;(0) with the deleted Riemann sphere C \ {oo} and
set B(c0,t) = oo for all t € A. Then, the map 3 : ({oo} U (s \ V) x A — C
is clearly a holomorphic motion which, by Lemma 3.1.3, extends to the closure of
(Qnyp \ Q). We thus obtain a continuous holomorphic motion

B ({00} U (Qnyy \ Q) UDM) x A — C.

As, by construction, 5(z,t) # oo when z # oo, the identity 4.3.1 shows that o(z,t) =
(a(z,t), B(z,t)) extends to a continuous holomorphic motion of ((Qpy, \ ©) UbM).
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Third step: laminarity properties.

Let us show that Tiilv, = [p,,, ©) [0(2,A)] 1. According to the approximation
formula given by Theorem 4.2.1 applied on Per;(0) we have:

g1 =lim2™"™ > 3o (20 (4.3.2)
" z€Per1(0)NPerm (0)
Let us set T := fPeh(O) [0(2,A)] p1. We have to check that T = Ty|y,. Let ¢ be

a (1,1)-test form in U;. As the holomorphic motion o is continuous, the function
2+ ([o(z, A)], ¢) is continuous as well. Then, using 4.3.2 one gets

(T.¢) =lm2™ 3 (o= A)]¢) = im2 "™ ([Per,(0)],¢) (43.3)

z€Peryp(0)NPery, (0)

where the last equality uses the fact that, according to Proposition 2.2.10, the curves
Per,,(0) have no multiplicity in U;. Now the conclusion follows by using 4.3.3 and
the approximation formula of Theorem 4.2.1 in Uj.

By construction, the map o is holomorphic on (thp \ Q?) x A and preserves the
curves Per,(w) for n > 2 and |w| < 1. This extends to |w| = 1 by continuity.

Using the continuity of o, one easily sees that a(bM,A) is closed in U; and
therefore contains the support of [ Per1(0) [0(2z,A)] 1. By the above formula we thus
have

Bif; = SUpp(Tbif|U1) C a(bM, A).

The opposite inclusion easily follows from the construction of o: any point in
o (bM,A) is a limit of z,, € Per,,(0) where m — +oc. O

COROLLARY: Closure of Bif in P2777.

Instead of using the basic A-Lemma we could have use its far advanced general-
ization due to Slodkowski and get a motion on the full line Per(0).

Theorem 4.3.4 (Slodkowski A-lemma) Let E C C be a subset of the Riemann
sphere and 0 : E x A 3 (z,t) — o(z,t) € C be a holomorphic motion. Then o
extends to a holomorphic motion & of C. Moreover & is continuous on E x A and

" , ‘ : Lt
2+ G(z,t) is a K-quasi-conformal homeomorphism for K := et

Our reference for quasi-conformal maps is the book [H] where one can also find
a nice proof of Slodkowski theorem due to Chirka and Rosay.

Using Slodkowski Theorem one may obtain further informations on the motion
given by Theorem 4.3.2. We refer to our paper [BB2| for a proof.
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Theorem 4.3.5 Let o : ((thp \ Q?) U b/\/l) x A — Uy be the holomorphic motion
giwen by Theorem 4.3.2. Then o extends to a continuous holomorphic motion & :
Per1(0) x A — Uy which is onto. All stable components in Uy are of the form
7 (w x A) for some component w in Peri(0). Moreover, the map X\ — &(\,t) is a
quasi-conformal homeomorphism for eacht and ¢ is one-to-one on (Perl(O) \@) x A
where O is the main cardioid.

Theorem 4.3.5 shows that non-hyperbolic components exist in U; if and only
if such components exist within the quadratic polynomial family Per;(0). Let us
underline that, in relation with Fatou’s problem on the density of hyperbolic rational
maps, it is conjectured that such components do not exist.

4.3.2 Further laminarity statements for T;;

The following result is an analogue of Theorem 4.3.2 in the regions
U, = {X € Mod,/ f, has an attracting cycle of period n}.

It shows, in particular, that the bifurcation current in Mods is uniformly laminar
in the regions U,. It has been established by Bassanelli and Berteloot in [BB2].

Theorem 4.3.6 Let Biy, be the bifurcation locus in U, and Tyyly, be the associated
bifurcation current. Let Bit’ be the bifurcation locus in the central curve Per,(0)

and pg, be the associated bifurcation measure. Then, there exists a map

o:Bify x A — Bi,
(AN t) — a(\ i)

such that:
1) o (Bitf x A) = Big,

2) o is continuous, o(\,-) is one-to-one and holomorphic for each \ € Bif!

3) pn(c(N 1), 1) =0; VA € Byl ,Vt € A

4) the discs (0(X, A))\cpipe are mutually disjoint.

Moreover the bifurcation current in U, is given by
Tujo, = [ o)1
Biff
and, in particular, Bif, is a lamination with i, as transverse measure.
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The proof is similar to that of Theorem 4.3.6 but requires a special treatment
for the extension problems since there is no A-lemma available. The key is to use
the fact that, by construction, the starting motion o : (Up 2, (U, NU,)) X A — U,
satisfies the following property:

pn (0(N 1), 1) =0; VA € Bit,Vt € A.

Such a motion is what we call a p,-guided holomorphic motion. Using Zalcman
rescaling lemma, one proves the following compactness property for guided holo-
morphic motions. We stress that here, an holomorphic motion G is seen as family
of disjoints holomorphic discs o and Gy, is the set of points o(tp).

Theorem 4.3.7 Let p(A\,w) be a polynomial on C*> x C such that the degree of
p(-,w) does not depend on w € A. Let G be a p-guided holomorphic motion in C?
such that any component of the algebraic curve {p(-,t) = 0} contains at least three
points of G, for everyt € A. Then, for any F C G such that F;, is relatively compact

in C? for some tg € A, there exists a continuous p-guided holomorphic motion F in
C? such that F C F and Fy, = Fy,-

The above Theorem plays the role of the A-lemma in the proof of Theorem 4.3.6.
We refer to the paper [BB2] for details.

We will now end this section by quoting another laminarity result for 7} which
is due to Dujardin (see [Du])

Theorem 4.3.8 Within the polynomial family of degree 3, the bifurcation current
15 laminar outside the connectedness locus.

We refer to section 2.3 for the discussion of the connectedness locus within poly-
nomial families.
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Chapter 5

The bifurcation measure

5.1 A Monge-Ampere mass related with strong
bifurcations

5.1.1 Basic properties

Since the bifurcation current Tiz of any holomorphic family (fx),c,, of degree d
rational maps has a continuous potential L (see Definition 3.2.6 and Theorem 3.2.9),
one may define the powers (Thie)* := Tiir A Thig A - - - A Tyie for any k < m = dimM.
We recall that for any closed positive current 7', the product dd°L A T is defined
by dd°L AT := dd*(LT). In particular, (i)™ is a positive measure on M which is
equal to the Monge-Ampere mass of the Lyapunov function L.

Definition 5.1.1 Let (f)) ) be a holomorphic family of degree d rational maps
parametrized by a complex manifold M of dimension m. The bifurcation measure
toir of the family is the positive measure on M defined by

tivig = —(Toip)™ = 5 (dd°L)™

where Ty ts the bifurcation current and L the Lyapunov function of the family.

The following proposition is a direct consequence of the definition and the fact
that upie has locally bounded potentials.

Proposition 5.1.2 The support of s is contained in the bifurcation locus and
Weir does not charge pluripolar sets.

It is actually possible to define the bifurcation measure in the moduli space Mody
of degree d rational maps and show that this measure has strictly positive and finite
mass (see [BB1] Proposition 6.6). Although all the results we will present here are
true in Mody, we will restrict ourself to the technically simpler situation of holo-
morphic families. The example we have in mind are the polynomial families and
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the moduli space Mods which, in some sense, can be treated as a holomorphic family.

In arbitrary holomorphic families, the measure puyp;r can identically vanish. More-
over, it is usually quite involved to that u; > 0. Note however that this will follow
from standard arguments in polynomial families. The following simple observation
already shows that pp > 0 in M, (and more generally M), it has also its own
interest.

Proposition 5.1.3 In any holomorphic family, all rigid Lattés examples belong to
the support of fiyf -

Proof. The parameters corresponding to rigid Lattes examples are isolated. By
Theorem 1.3.5, these points correspond to strict minima of the Lyapunov function
L and therefore the Monge-Ampere measure (dd°L)™ cannot vanish around them. O

We end this subsection by showing that the activity currents have no self-
intersection. This is a useful geometric information which, in particular, shows
that the activity of all critical points is a necessary condition for a parameter to
be in the support of the bifurcation masure. It was first proved by Dujardin-Favre
in the context of polynomial families (see [DF] Proposition 6.9), we present here a
general argument due to Gauthier ([G]).

Theorem 5.1.4 Let (f\),c,, be any holomorphic family of degree d rational maps
with marked critical points. The activity currents T; satisfy T; NT; = 0. In particular,
when m = dim M = 2d — 2 (orm =d — 1 for polynomial families) then

poig =Ty NIy N N,

and Supp iy 15 contained in the intersection of the actwity loci of the critical
points.

The proof is very close to that of a density statement which will be presented
in the next section, it combines the following potential-theoretic lemma with a dy-
namical observation.

Lemma 5.1.5 Let u be a continuous p.s.h function on some open subset ) in C2.
Let T be the union of all analytic subsets of 2 on which u is harmonic. If the support

of dd°u is contained in T then dd°u A ddu vanishes on €.

Proof. Let us set pu := dd°u A dd°u. Let B, be an open ball of radius r whose closure
is contained in €2, we have to show that p (Bg) =0.

Denote by h the solution of the Dirichlet-Monge-Ampere problem with data u
on bB,:
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h = u on the boundary of B,
dd°h A dd°h = 0 on B, (i.e. h is maximal on B,).

The function h is p.s.h and continuous on_Fr ( (see [BT]). As h is p.s.h maximal
and coincides with the p.s.h function v on bB,., we have w < h on B,. For any € > 0
we define

De.:={A€ B /0< h(\) —u(A) < e}

We will see that our assumption implies that
Supp 1N Bz C D, for all € > 0. (5.1.1)
Indeed, if v is a complex curve in €2 on which u is harmonic then, the maxi-
mum modulus principle, applied to (h — u) on v N B, implies that h = u on 7.
Then, as (h — u) is continuous on B, and Supp pu C Supp ddu C T, we get

Supp pN B, C {h =u}.

Now, a result due to Briend-Duval (see[BD] or [DS] Théoreme A.10.2) says that
w(De) < Ce (5.1.2)

where C' only depends on u and B,.. From 5.1.1 and 5.1.2 we deduce that u (B
O

) =0.

r
2

We may now end the proof of Theorem 5.1.4.

Proof. We only have to show that T; A T; = 0, the remaining then follows from the
identity Tiis = >, T; (see Theorem 3.2.8).

The statement is local and we may therefore assume that M = C¥. Moreover, an
elementary slicing argument allows to reduce the dimension to k& = 2. We apply
the above lemma with v = G, (¢;(\)) (see Lemma 3.2.7). We have to show that
the support of dd“u = T; is accumulated by curves on which the critical point ¢; is
passive. These curves are of the form {f{(c;(\) = ¢;(A\)} and their existence follows
from Lemma 3.1.8. O.

An example, due to A.Douady, shows that the activity of all critical points is
not sufficent for a parameter to be in the support of the bifurcation measure. We
will present this example in the next subsection (see 5.1.7).

5.1.2 Some concrete families

We first discuss the case of the polynomial families introduced in subsection 2.1.2.
We follow here the paper [DF| by Dujardin and Favre.
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Proposition 5.1.6 The bifurcation measure pyy of the degree d polynomial family
(Pc,a) (ca)eCi—1 1s a probability measure supported on the connectedness locus C. It
coincides with the pluricomplex equilibrium measure of C and its support is the Shilov

boundary of C.

Proof. Let us recall that the Green function of the polynomial P, , is denoted g 4.
The connectedness locus C is a compact subset of C4! which coincides with the
intersection No<;<q4—2B; where B; is the set of parameters for which the orbit of the
critical point ¢; is bounded (see Theorem 2.3.5). As the support of the activity cur-
rent 7; is contained in bB3; we deduce that Supp pnie C C from Theorem 5.1.4. All the
remaining follows from the fact that pupe = (ddcg)d‘l where G is the pluricomplex
Green function of C with pole at infinity:

G := sup{up.s.h / u—In" max{|al,|cx|} < O(1),u < 0onC}

an identity which we shall now prove.

Let us first establish that pne = (dd°G)?™" where G := maz{go, g1, - -, ga_o}
and g; '= gcal(c;). We show by induction that Ty ATy A - - AT} = (alchl)lJrl for
0 <1 < d—2 where G; := max{go, g1, - -, qi}. This follows from the following
computation:

To ATy A - ANTi—y ATy = dd° (g,(dd°Gy-1)") = dd° (Gy(dd°Gy—,)") =
dd°® (Gy-1(dd°Gy—1)'* A dd°Gy) = dd® (Gy(dd°My—1)'~" A dd°G)) = (dd°Gy)'™
the second equality follows from g, = G on the support of (dd°G;_1)" and the

fourth from G; = G;_; on the support of dd°G, the last equality is obtained by
repeating the same arguments [ — 1 times.

It remains to show that G = G. The proof is standard and relies on the estimate
given by Proposition 2.3.7 and the fact that G is maximal outside C. We refer to
the paper [DF], Proposition 6.14 for more details. O

We will now present the example mentionned at the end of last subsection.

Example 5.1.7 In the holomorphic family of degree 3 polynomaials

(1+a)z+ (5 +a2)2® + 23)a6v0

where Vjy is a neighbourhood of the origin in C? the critical points are both active at
the origin (0,0) but (0,0) & Supp fipis -

This family is a deformation of the polynomial Py := z + %ZQ + 23 If Vg is
small enough we have two marked critical points ¢;(«) and co(a). The origin 0 is
a parabolic fixed point for Fy and we may assume that P, has two fixed points
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counted with multiplicity near 0 for all a € V. As P is real, its critical points are
complex conjugate and both of them are attracted by the parabolic fixed point at
0, moreover their orbits are not stationnary.

We first show that (0,0) ¢ Supp e . When the fixed points of P, are distinct,
we denote by my(a) and mgy(a) their multipliers. When this is the case, it turns out
that either |m;(a)| < 1 or |ma(a)| < 1 and thus one of the fixed points attracts a
critical point. This can be seen by using the holomophic index fixed point formula.
By Theorem 5.1.4, this implies that o ¢ Supp ppir . We thus see that ppe is sup-
ported on the subvariety of parameters a for which the fixed point is double. By
Proposition 5.1.2 this implies that uie vanishes near (0, 0).

Let us now see that both critical points are active. We may assume that the
family is parametrized by a disc D in C such that P, has two distinct fixed points
when a # 0. Assume to the contrary that a critical point c¢(«) is passive. Then,
after taking a subsequence, the sequence u,(a) := P2(c()) is uniformly converging
to u(a). Since the polynomial P, is real, its critical points are complex conjugate
and must therefore both be attracted by the parabolic fixed point 0. Moreover, their
orbits are not stationnary. From this one easily deduce that the curve (o, u(«)) lies
in the analytic set Z := {(a, 2) € D x P! / P,(2) = z}. This is impossible since, for
some « close to 0, the critical orbit should be attracted by a repelling fixed point.0

The situation in the moduli space Mod, is more complicated. We recall that
Mod, can be identified to C2. Using the results which will be obtained in the last
section of this chapter and the holomorphic motions constructed in section 4.3, it is
possible to show that the support of the bifurcation locus is not bounded.

5.2 Density statements

We show that the remarkable parameters introduced in subsection 3.1.3 accumulate
the support of the bifurcation measure.

5.2.1 Misiurewicz parameters

The results given in this subsection are essentially due to Dujardin and Favre. We
present them in the setting of polynomial families and refer the reader to the original
paper ([DF]) for a greater generality.

Theorem 5.2.1 In the degree d polynomial famaily (Pc,a) let us define a

(c,a)eCd—1
sequence of analytic sets by:

n; k n;
Wog o = N_o{ Pr(c;) = PAT (¢))}
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where | < d —2 and k(n;) <n;. Then

. . 1 _
iy, o0+ g 00 gramss g (Who,na_a) = Hobif

and Wy, ...n,_, 18 discrete.

Proof. We treat the case d = 3 which is actually not very different from the general
case.

Let us first observe that W, ,, has codimension at least two and is contained
in the connectedness locus which is compact (see Theorem 2.3.5). Thus W, ,, is a
discrete set.

Applying a version of Theorem 4.1.1 suitably adapted to the family W,,, yields

lim d™ [WTLO:nl] =T A [Wno]

ny—oo
where 7T} is the activity current of the critical point ¢;. By the same Theorem one
has lim,,, 0o " [W,,,] = Tt where Tj is the activity current of ¢ and this, since T}
has continuous potentials, gives

lim Tl A d"™° [Wno] = Tl VAN To.
no—ro0
The conclusion follows immediately since, according to Theorem 5.1.4, iy = ToAT.
O

An important consequence of the above result is that the support of the bifur-
cation measure is accumulated by Misiurewicz polynomials. An alternative proof
of that fact will be given in the next subsection for arbitrary families. We refer to
3.1.16 for a definition of Misiurewicz parameters.

Corollary 5.2.2 In polynomial families, the support of the bifurcation measure is
contained in the closure of strongly Misiurewicz parameters: Supp fuyy C Moiss.

Proof. By the above Theorem

1
lim --- lim [ﬂg_Q{Pc’?g(cj) =P e} = e - (5.2.1)

ng_o—+00 no—oo dnd-2 4 « « « 4 dno c,a

Let us observe that

Hj = {P}i(c;) = P35 (c;)} = Preper,, + Fix;

c,a

where, for parameters in Preper,; the critical point c; is strictly preperiodic to a
(necessarily) repelling fixed point while ¢; is fixed for parameters in Fix;.
Now Theorem 4.1.1 may ne rewritten as
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Qi

1
lim ——[Prepery,] +

nj—oo "I dni

[Fiz;] =T (5.2.2)

but, as T} cannot charge the hypersurface Fiz;, we must have % — 0. Thus
lim,,; o0 ﬁ[PTeperj] =T; and 5.2.1 yields

, : 1 -2
nd112n—1>oo. ) n}gnoo p T [ﬂjZOPrepeTnj] = L -
The conclusion follows immediately since ﬁ?;gPrepeTnj C Miss. ad

5.2.2 Shishikura or hyperbolic parameters

We aim here to show that the support of the bifurcation measure in Mod, is si-
multaneously accumulated by Shishikura and hyperbolic parameters (see subsection
3.1.3 for definitions):

Supp ppie C SniN Hyp.

It is worth emphasize that both statements will be deduced in the same way
from the following generalized version of Theorem 4.2.5.

Theorem 5.2.3 Let ju;6 be the bifurcation measure of a holomorphic family (fx)xem
of rational maps. Let m denote the complex dimension of M. Let 0 <r < 1. Then
there exists increasing sequences of integers ko(n), ..., ky(n) such that:

- (na(n) -k (n)

ml(2m)m

i = hgl /[02 | [Per,(re?)] A /\[Perkj(n) (re®N] dby - - - dby,.
,2m|m j=2

Moreover, we may assume that k;(n) # k;(n) when i # j.

We will derive that result from Theorem 4.2.5 by simple calculus arguments with
currents.

Proof. For any fixed variety Per,(re??), the set of § € [0, 2n] for which Per,(re'r)
shares a non trivial component with Per,,(re??) for some m € N* is at most count-
able. This follows from Fatou’s theorem on the finiteness of the set of non-repelling
cycles. Thus, the wedge products [Per,, (re)] A - - - A [Per,,, (re?)] make sense
for almost every (61, --,0,) € [0,27]™ and the integrals ﬁ072ﬂ]m[Pern(r6i91)] A

NIy [Pery,my(re®)] dby - - - db,, are well defined.

Next, we need the following formula which has been justified for ¢ = 1 at the
end of the proof of Theorem 4.2.5. The proof is similar for ¢ > 1 and we shall omit
it. Recall that LT ()\) := £ OQW In |pn (A, 7€) do.

2w
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dd°Li, A+ AddLi, =& e tne) Jio.2m0 Nizi[Pern, (re'®)]do, - - - db,.

T @2me

To prove the convergence, we may replace M by C™ since the problem is local.
The conclusion is obtained by using Theorem 4.2.5, the above formula and the next
lemma inductively.

Lemma 5.2.4 [f S, — (dd°L)? for some sequence (S,), of closed, positive (p,p)-
currents on M then ddCL};(n) A S, — (dd°L)P™ for some increasing sequence of
integers k(n).

Let us briefly justify lemma 5.2.4. Let us denote by s,, the trace measure of S,,,
as M has been identified with C™ this measure is given by s, := S, A (dd®|z|?)™?.
Since S, is positive, s, is positive as well. Let us consider the sequence (uy); defined
by uy := L}, — L. We now that (uy)x converges pointwise to 0 (see remark 4.2.6) and
is locally uniformly bounded (the function L is continuous). The positive current
S, may be considered as a (p,p) form whose coefficients are measures which are
dominated by the trace measure s,. Thus, by the dominated convergence theorem,
(L, — L)S, = uiS, tends to 0 as k — oo and n is fixed. On the other hand, LS,
converges to LS because L is continuous. It follows that some subsequence L};(n)Sn
converges to LS. O

Corollary 5.2.5 In the moduli space Mody the support of the bifurcation measure
Wair 48 contained in ShiN Hyp.

Proof. Use Remark 2.1.3 to work with families and then apply Theorem 5.2.3. For
0 <7 <1 one gets Supp pniy C Hyp and for r =1 Supp pnie C Shi O

Let us end this subsection with a few remarks.

We first notice that the above arguments yields a rather simple proof of the ex-
istence of Shishikura maps, the original proof uses quasi-conformal surgery.

Also, combining the above Corollary with Proposition 5.1.3 one sees that rigid
Lattes maps are accumulated by Shishikura’s maps or by hyperbolic maps. This

last information apparently answers a question raised by Michel Herman.

Theorem 5.2.3 remains true, with the same proof, if one replace the integrals by
/ [Per,(r1e)] A /\[Perkj(n) (r;e")] dby - - - db,,
[0,27]™ =2 '

where 0 < r; <1for 1 <j <m. As a consequence, if « +v = m and P,,, is the set
of parameters A such that f\ has v distinct attracting cycles and v distinct neutral
cycles Then Supp puni is contained in the closure of P, ,.
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5.2.3 Shishikura parameters with chosen multipliers

As Theorem 4.2.9 shows, polynomial with a neutral cycle of a given multiplier are
dense in the support of the bifurcation current. We believe that a similar property
is still true for the bifurcation measure which means that Shishikura parameters
with arbitrarily fixed multipliers should be dense in the support uis . The following
result goes in this direction.

Theorem 5.2.6 Denote by p(f) (resp. s(f), c¢(f)) the number of distinct parabolic
(resp. Siegel, Cremer) cycles of f € Mody. Then

Supp pyi C{f € Mody [ p(f) =p,s(f) = s andc(f) = c}

for any triple of integers p, s and ¢ such that p+ s+ c = 2d — 2.

The proof is essentially based on Lemma 5.1.5 and Mané-Sad-Sullivan theorem.
More precisely we will use the following

Lemma 5.2.7 Let E be a dense subset of [0,27]|. Then for any holomorphic family
of degree d rational map (fy),, the set

Un User Pern ()
1s dense in the bifurcation locus.

Proof. Use Mané-Sad-Sullivan theorem or Theorem 4.2.5 with r = 1. O

Let us now prove Theorem 5.2.6. We restrict ourself to Mod,. The general case
requires to use a slicing argument, we refer to [BB1] for details.

Proof. Let E; and Es; be two dense subsets of [0,27]. Let A\¢g be a point in the
support of uni and Uy be an arbitrarily small neighbourhood of \y. By Lemma
5.2.7, the support of the bifurcation current dd°L is accumulated by holomorphic
discs contained in U, Upe g, Per,(¢?). Among such discs, let us consider those which
go through U, and pick one disc I'y on which the Lyapunov function L is not har-
monic. Such a disc exists since otherwise, according to lemma 5.1.5, the measure
e would vanish on Uy. The bifurcation locus of ( f,\)Fl is not empty and thus, to
get a Shishikura parameter in Uy with multipliers ¢ and e where 0; € Ej, it
suffices to apply again Lemma 5.2.7 with the dense set Ej to the family (fy)p,. O

5.3 The support of the bifurcation measure

In this section we will show in which sense the support of the bifurcation measure
in Mod, can be consider as a strong-bifurcation locus.
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5.3.1 A transversality result

Transversality statements play a very important role for understanding the struc-
ture of parameter spaces. We have alrady encounter such results like for instance
Lemma 4.3.3 or the Fatou-Shishikura inequality. We refer to the fundamental work
of Epstein [Eps2] for a general and synthetic treatement of transversality problems
in homorphic dynamics.

All the results presented here are true in Raty or in the moduli spaces Mody. For
simplicity we shall restrict ourself to the moduli space Mod, which will be treated
as a holomorphic family (f),cc2 (see Theorem 2.2.8). We shall also assume, to
simplify the exposition, to have two marked critical points ¢; () j =1, 2.

Assume that fy € Mod, is strongly Misiurewicz. This means that there exists
two repelling cycles

n;—1
Ci(0) :={2(0),- -+ fo" (2(0))}
and an integer kg > 1 such that
0°(¢;(0)) = 2;(0) but ¢;(0) ¢ C;(0)
for j =1,2.
By the implicit function theorem, we may follow the cycles C; on a small ball
B(0,r) centered at the origin. Writting C;(\) := {z;(A),- -, ;jfl(zj()\))} the cycles

corresponding to the parameter A € B(0,r), we may define an important tool for
studying the parameter space near fj.

Definition 5.3.1 The map x : B(0,r) — C? defined by

A ( (e (V) — Zj()‘))j:m

1s called activity map near the Misiurewicz parameter fq.

As we shall see, thanks to the next result, the activity map will allow to transfer
informations from the dynamical space of fy to the parameter space.

Theorem 5.3.2 The activity map x near a strongly Misiurewicz parameter fo s
locally invertible.

This Theorem was proved by Buff and Epstein (see [BE]) in the general setting
of Raty. In that case one has to assume that fp is not a flexible Lattes map (such
maps do not exist in degree two). The proof of Buff and Epstein uses quadratic
differentials thechniques. We shall prove here a weaker statement which is due to
Gauthier ([G]) and is sufficent for the applications we have in mind.
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Theorem 5.3.3 The activity map x near a strongly Misiurewicz parameter fy is
locally proper.

The proof of that result is based on more classical arguments going back to
Sullivan (see also [vS] or [A]). The key point relies on the folowing Lemma.

Lemma 5.3.4 All holomorphic curve contained in Miss consists of flexible Lattes
maps.

Proof. Assume to the contrary that (fy),.p is a holomorphic family parametrized
by a one-dimensional disc which is consisting of strongly Misiurewicz parameters
and such that the f) are not flexible Lattes maps.

Then the Julia set of f\ coincides with P! for all A € D and, according to a
Theorem of Mané-Sad-Sullivan (see [MSS] Theorem B), there exists a quasiconformal
holomorphic motion ® : D x P! — P! which conjugates fy to fo on P!. Let us
denote by p* the Beltrami form satisfying

9Py . A02)
oz =K oz °

There exists \; € D\ {0} for which the support of u* has strictly positive Lebesgue
measure. Indeed, if this would not be the case, f, would be holomorphically con-
jugated to fp for all A € D. Then the Julia set of f\, carries an invariant line field
and thus f), is a flexible Lattes map (see [BM] Theorem VII. 22 and [Mc]| corollary
3.18). This is a contradiction. O

We may now easily prove Theorem 5.3.3

Proof. Let us first establish that at least one critical point must be activ. Assume
to the contrary that both critical points are passiv around fy. Then, according to
Lemma 3.1.17, f) is strongly Misiurewicz for all A € B(0, r) after maybe reducing 7.
Cutting B(0,7) by a disc D passing through the origin we obtain, by lemma 5.3.4,
a disc of flexible Lattes maps. Since this is impossible in Mods (and by assumption
in other cases) we have reached a contradiction and proved that at least one critical
point, say ¢y, is activ at fo.

The activity of ¢; means that x;'(0) has codimension one. The conclusion is
obtained by repeating the argument on the hypersurface y;'(0). O

5.3.2 The bifurcation measure and strong-bifurcation loci

We want to establish that the inclusion Supp unie C ShiN Miss obtained in subsection
5.2.2 is actually an equality. This is the reason for which we shall consider the
support of the bifurcation measure as a strong-bifurcation locus. This is essentially
a consequence of the following result due to Buff and Epstein [BE].
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Theorem 5.3.5 In the moduli space Mody the set of strongly Misiurewicz parame-
ters is contained in the support of the bifurcation measure: Miss C Supp fpif -

Corollary 5.3.6 In the moduli space Mody one has Supp puyis = Shi = Miss.

Proof. To simplify the presentation we will work in the degree 3 polynomial family
(P.o) (c.a)eC?” As usual we write A the parameter (c,a) and ¢1()\), ca(\) the marked
critical points, the fact that in this setting ¢; = 0 does not play any role here.

Assume that pg is a strongly Misiuerewicz polynomial. By definition, there exists
an integer ko such that pi°(c;(0)) =: z;(0) is a repelling periodic point for j = 1, 2.
To get lighter notations we whall assume that the z;(0) are fixed repelling points.

We denote by z;(A) the repellling fixed points which are obtained by holomorphi-
cally moving z;(0) on some neighbourhood of the origin and by w;(\) the correspond-
ing multipliers. Observe that |w;(A)| > a > 1 on a sufficently small neighbourhood
of 0.

The activity map x (see definition 5.3.1) may be written: y = (x1, x2) where

Xi(A) = PX° (c;(N) = 2 ().

We will use here Theorem 5.3.2 and assume that x is locally invertible at the
origin. It is possible adapt the proof for using the weaker transversality statement
given by Theorem 5.3.3). For this one uses the fact that the sets obtained by rescal-
ing the ramifiction locus of x are not charged by the measure pp;¢ and, thanks to
some Besicovitch covering argument, reduces the problem to some estimate similar
to those which we will now perform in the invertible case. We refer to te papers
[BE] and [G] for details.

Let us denote by D?(0,¢) the bidisc centered at the origin and of multiradius
(¢,€) in C% For € small enough we may define a sequence of rescaling

6, 2 D*(0,¢) — Q,

1
w1 (0)

that e (€2,) > 0 for all n. The crucial point of the proof is revealed by the following
computations.

by setting d,(z) :== x ( ,#(20)) To prove the Theorem, it suffices to show

2yt () = / T2, = / 55 (T 4+ Ty)? > / 5 (Ty A Ty) =
Qn D2(0,¢) D2(0,¢)

- /Dz(o )5; [dd°gx(c1(N)) A ddga(ca(N))]
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using the homogeneity property of the Green function

9 (c5(N) = 37" gy (PR (e5 (V)

one thus gets

2 300 e (Q,) > / 0y, [dd°gx 0 P\ (er(N) A ddigy 0 " " (ea(N))] =
D2(0,¢)

- / 0 " Gt o Pyt (c1(8u(@))) A dd°gs, (a) © P52 (e2(6a(2))).
D?(0,¢e

n

Let us express the quantities plgg?;g(cj(én(x)) by using the activity map x. By

definition we have p5™"(c;(\)) = p} (2;(\) + x;(\)) and thus

L 0u(0)) = g (300000 + ).

To conclude, we momentarily admit the following
Claim: pj ., <zj (0n(2)) + ﬁ) is uniformly converging to some local biholo-
morphism v; : C,p — Pl,zj(o).

As the Green function g,(z) is continuous in (A, z), the Claim implies that gs,, (z)0

plggz;g(cg(én(x))) uniformly converges towards go (o(z;)) and our estimate yields

imint e () = [ ddgn (01(00) A ddgn (a(a) =

D2(0,¢)

P1(D(0,6)) ¥2(D(0,€))

where the positivity of the last term follows from the fact that the repelling fixed
points z;(0) = 1;(0) belong to the Julia set of py.

It remains to justify the Claim. Let us write w;(\) on the form w;(0) (1 + €;(X)).
As [|6,(2)]] < C5 one sees that (14 ¢;(d,(x)))" is uniformly converging to 1. Then

o (5000 + 557 ) = Pl | (o) + s (L 00"
behaves like p§ [zj (0n(2)) + m}

Now let us linearize py near the repelling fixed points z;(A). The linearization
holomorphically depends on the parameter A and one gets local biholomorphisms

1, » such that 1; ,(0) = z;(\) and
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pr o ¥a(z) = Yia(w(A)z) on B(0, )

Then the local biholomorphism ; of the Claim is simply ;. O

Remark 5.3.7 By Theorem 5.1.4, (T\ +Ty)* = 2Ty ATy and therefore the estimate
in the proof of Theorem 5.3.5 becomes an equality:

2- 3(k0+n)lu’bif (Qn) = /;2(0 ) ddcgén(x) OP?Z?Z;(Q (5n(x))) A ddcgén(m) o plggz;g(c2(5n(x)))

This allows to estimate the pointwise Hausdorff dimension of pyy at (strongly) Mi-
sturewicz parameters.

5.3.3 Hausdorff dimension estimates

Here, we will simply mention some further results obtained by T. Gauthier in his
thesis (see [G]).

Using the transversality map x associated to Misiurewicz parameters (see The-
orem 5.3.3) it is possible to construct a ”transfer map” which copies some pieces of
the dynamical plane into the parameter space. These tecniques have also been used
by Shishikura for proving that the boundary of the Mandelbrot set is of Hausdorff
dimension 2 and by Tan Lei for proving that the bifurcation locus in any polynomial
families has also maximal Hausdorff dimension.

This allows to relate the Hausdorff dimension of the strong -bifurcation locus with
the hyperbolic dimension of Misiurewicz parameters. Using Misiurewicz parameters
whose critical orbits are captured by hyperbolic sets with high Hausdorff dimension
then gives the following

Theorem 5.3.8 The strong-bifurcation locus has full Hausdorff dimension.
Combining this with Theorem 5.2.6 then yields the

Corollary 5.3.9 Denote by p(f) (resp. s(f), c(f)) the number of distinct parabolic
(resp. Siegel, Cremer) cycles of f € Raty. Let p, s and c be three integers such that
p+s+c=2d—2. Then the set

{f € Ratg / p(f) =p,s(f) = s and c(f) = c}

is homogeneous and has maximal Hausdorff dimension 2(2d — 2).
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