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Resume

How an investor measures his daily risky choices in a financial market? This a
fundamentally important problem. According to the well–known expected utility
theory under von Neumann and Morgenstern’s axioms an agent prefers a random
choice X to another one Y can be described by

E[u(X)] ≥ E[u(Y )].

where u is a fixed increasing function, called utility function and E[·] is the ex-
pectation in a probability space (Ω,F , P ). But statistical tests and theoretical
analysis show that this expectation has to be nonlinear in many important situ-
ations. This phenomenon becomes even more obvious in the situation where the
statistic data is incomplete: it is often the case for investors in a financial market.

In this lectures, we will study this theory nonlinear expectation within the
model of continuous time. Let (Ω,F) be a measurable space and let Lb(F) be the
space of F–measurable and bounded real functions. A nonlinear expectation is a
continuous functional

E [·] : Lb(F) −→ R

that is order preserving (i.e., E [X1] ≥ E [X2], if X1 ≥ X2) and constant pre-
serving (i.e., E [c] = c).



If furthermore E [·] is a linear functional, then it is a classical expectation under
the (additive) probability measure P on (Ω,F) induced by

P (A) := E [1A], A ∈ F . (0.1)

In this case we have
E [X] =

∫

Ω
X(ω)dP (ω).

It is well–known that there is a 1–1 correspondence between linear expectation
and additive probability measures. But this 1–1 correspondence fails in nonlinear
situation. In general, given a nonlinear expectation E [·], one can still derive a non
additive probability measure P by (0.1). But there exist an infinite number of
nonlinear expectations satisfying the same relation. There is a simple example:
let E [·] be a (linear or nonlinear) expectation. We define the following nonlinear
expectation

Ef [X] := f−1(E [f(X)]),

where f is an arbitrary strictly increasing and continuous function defined on R
with f(x) ≡ x, for x ∈ [0, 1]. It is easy to check that Ef [1A] = E [1A], for all A ∈ F .
Clearly, in nonlinear situations, the notion of expectation is more characteristic
than that of non additive measures. Thus in nonlinear situations the notion of
expectation is more characteristic than that of non additive measures. We refer
to [4, Chen-Epstein2002] for a deeper investigation.

Let E and E ′ be two nonlinear expectations. E ′ is said to be dominated by E ′
if

E ′[X]− E ′[Y ] ≤ E [X − Y ], ∀X, Y. (0.2)

E is said to be self–dominated, or subadditive, if E is dominated by itself. This
notion of dominations will play an important role in this lecture.

In dynamic situation, a basic notion is the conditional expectation under a
given filtration Ft. This notion permits us to use the up–date information Ft to
obtain the best estimate of a given random variable. The well-known martingale
theory is fundamentally based on this notion (see [17, Dellachirie-Meyer1982]). As
in linear situations, the conditional nonlinear expectation of a random variable X
under Ft is an Ft–measurable random variable E [X/Ft] satisfying

E [1AE [X/Ft]] = E [1AX], ∀A ∈ Ft.

An nonlinear expectation E [·] is called Ft–consistent if such E [X/Ft] exists for
all t ≥ 0 and X ∈ Lb(F). In nonlinear situations, there exist non–consistence
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expectations. If E [·] is Ft–consistent, we then can develope the related nonlinear
martingale theory, parallel to the classical one.

In this topic the following problems are theoretically meaningful and practi-
cally important:

P1. Can we find a simple mechanism, which enable us to generate a large kind
of filtration–consistent nonlinear expectation?

P2. For a given filtration consistent nonlinear expectation, is there a simple
mechanism that determines the value of this expectation?

Problem P1 was investigated in [37] where a notion of g–expectation was
introduced under the framework of the natural filtration (Ft)0≤t≤T generated by
a d–dimensional Brownian motion (Bt)0≤t≤T in a probability space (Ω,F , P ). It
is defined as follows. For each FT measurable and L2–integrable random variable
X, we solve the following BSDE:

−dY X
t = g(t, ZX

t )dt− ZX
t Bt, t ∈ [0, T ], (0.3)

Y X
T = X.

Here the mechanism is the function g : (ω, t, z) ∈ Ω × [0, T ] × Rd 7−→ R. It
satisfies the usual conditions for BSDE, i.e., Lipschitz and Linear growth in z and
Ft–adapted. In addition we assume that g(t, 0) ≡ 0. The g–expectation of X is
defined by

Eg[X] := Y X
0 .

We can check that this is an Ft–consistent nonlinear expectation. In fact the cor-
responding conditional g–expectation of X given Ft is nothing else but Eg[X|Ft] =
Y X

t . It is worth to point out that the expectation EQ[·] under the probability Q
derived via the well–known Girsanov transforation

dQ
dP

= exp
{

∫ T

0
bsBs −

1
2

∫ T

0
|bs|2ds

}

is in fact a linear case of the g–expectation in which g(t, z) = 〈bt, z〉. In the case
where g is nonlinear in z, the notion of g–expectations can be considered as a
nonlinear Girsanov transformation. Thus a large kind of Ft–consistent nonlinear
expectation can be generated by a simple mechanism g. Once this function g is
obtained, then the corresponding nonlinear expectation is uniquely determined by
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solving BSDE (0.3). We recall that in recent 10 years many numerical methods,
algorithms and the related numerical analysis i.e., convergence and convergence
rate ...

For a Ft–consistent nonlinear expectation, one can introduce the notion of
nonlinear martingales, submartingales and supermartingales. It is then natural
to ask whether the abundant results in the classical martingale theory have their
counterparts under the framework of g–expectations. Many results have been
obtained in this direction, among them the decomposition theorem of g–super
or submartingales of Doob–Meyer’s type has been proved for square–integrable
situation by [38] (Peng1999) and [8], [10], [9].

A natural question closely related to Problem P2 is: is the notion of g–
expectations large enough to cover all regular Ft–consistent nonlinear expecta-
tion? In recent lecture [5] we have the following result: if an Ft–consistent non-
linear expectation E is Egµ dominated, with gµ(z) := µ|z|, for some large enough
µ > 0, then there exists a unique function g such that E [X] = Eg[X], for all X.
Nonlinear Doob–Meyer decomposition mentioned above plays a crucial role in the
proof of this result.

But on the other hand, we will show that Eg[·] is a quasi nonlinear expectation,
i.e., the fully nonlinear situation can not be covered. Thus to solve Problem P2,
we must find a new mechanism to generate a wider kind of nonlinear expectations.

In this lecture we will use a nonlinear Markov semigroup (or Markov chain)
(Tt)t≥0 to generate an filtration–consistent nonlinear expectation E [·]. In other
words, the infinitesimal generatorA of (Tt)t≥0 is the generator of the corresponding
nonlinear expectations. In this situation, if A is quasilinear (resp. fully nonlinear)
then E [·] is also quasilinear (resp. fully nonlinear). Briefly, our procedure is as
follows:

1. We use a self–dominated nonlinear Markov semigroup T ∗
t to a self–dominated

and Ft–consistent nonlinear expectation E∗. In this step, we will introduce
an extension of Kolmogorov consistent theorem for a family finite dimen-
sional nonlinear distributions are induced by the Markov semigroup T ∗

t . The
condition of self domination of T ∗ permits us to induce a norm under which
E∗[·] and E∗[·|Ft] are continuous.

2. For an arbitrary T ∗
t –dominated Markov semigroup Tt we can apply the same

topology induced by T ∗ to generate the corresponding Ft–consistent nonlin-
ear expectation E [·] which is E∗–dominated. This E [·] is therefor continuous
under the given norm.
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Let g(z), z ∈ Rd be a real Lipschitz function with Lipschitz constant µ > 0.
Then Eg is Egµ dominated. So is the related nonlinear Markov chains. This
implies that a large part of g–expectations can be also generated by the above
approach. In this lecture we will also give some typical class of fully nonlinear
Markov semigroups. They are either self dominated or dominated by some other
self dominated fully nonlinear Markov semigroups. Thus the way to generate
filtration consistent nonlinear expectations is largely extended.

On the other hand, since the classical linear Markov semigroup are self dom-
inated. Thus they are also within our new framework. In fact in this special
situation this method corresponds the classical L1 theory. We recall that the
notion of g–expectations is essentially an L2–theory.

Another advantage of this domination approach is that, unlike in BSDE theory,
no prior probability space is required. In fact, the continuity and completeness of
the generated nonlinear expectation is under the norm induced by the given self
dominated Markov semigroup. This constitute a new ‘probability space’.

We will also study the existence and uniqueness of BSDE under this new
“probability space”. This extends BSDE theory to fully nonlinear situations.
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