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[ -convergence

Let X be a Polish space. Let {/.} be a sequence of functionals
I - X — [0, +00]. We define two functionals
=lim_ I, I-lim. . : X — [0, +o0] as

(Fim_ L) (x) := inf { lim,_g L(x), x° — x}
(Him. L) (x) == inf{ﬁﬁo I(x%), x° — x}

Whenever I-lim_ [.(x) = I-lim. I.(x) = I(x) for al x € X, we say
that /. I'-converges to /. The sequence {/.} is called
equicoercive iff for each M > 0 there exists an ey, > 0 and a
compact Ky C X such that U.<.,,{x € X : L(x) < M} C Ky.



Large Deviations

Let {a.} C [0, 1] be such that lim._ a. = 0. Let
I : X — [0, +o0] be a lower semicontinuous functional on X. A
sequence {P¢} C P(X) satisfies
* a large deviations weak upper bound with speed {a- '}
and rate / iff for each compact set K ¢ X

lima.logP¢(K) < — inf I(v) (1)
€ veK

o {IP*} satisfies a large deviations (full) upper bound with
speed {a-'} and rate / iff for each closed set C ¢ X

lima.logP(C) < — |2fc I(v) 2)

o {P¢} satisfies a large deviations lower bound with speed
{a-'} and rate | iff for each open set O c X

h?mag log P(0) = — inf I(v) (3)



Large Deviations

{IP} satisfies a large deviation principle iff an upper bound and
a lower bound hold with the same speeds and rates. {P<} is
called exponentially tight iff there exists a sequence {K;} of
compact subsets of X such that

@ﬁag log P*(K;) = —o0 (4)

Note that an exponentially tight family of probability measures
satisfies a large deviations upper bound iff it satisfies a large
deviations weak upper bound.



A classical example: the vanishing noise limit

Consider the SDE

x = b(x)+ Vea(x)W
x(0) = xo
and let P be the law of its solution. A classical result by Freidlin

and Wentcell states that P satisfies a large deviations principle
with speed ¢~ and rate

T LX) = b(x(1) [
0= [ )




Large Deviations for 1t6 processes

Consider the more general case

X = b(x)+ Ve (x)W
x(0) = Xxo

and for v < 1 introduce the functional

e T x(t) —
L) =5 /0 e x (D)o




Large Deviations for 1t6 processes

Consider the more general case

X = b(x)+ Ve (x)W
x(0) = Xxo

and for v < 1 introduce the functional

e T x(t) - b (x(t
=5 [ i

Then, w.r.t. to the speed ¢~ 1*+7
e If I is equicoercive then P¢ is exponentially tight.
o P¢ satisfies a weak large deviations upper bound with rate
—lim /..
o P* satisfies a large deviations lower bound with rate
—lim /..



Large Deviations for 1t6 processes

The statement also holds in infinite dimensions. Consider

x = b°(x)+ v=Noise®
x(0) = xo

where the noise term is a martingale with values in some
Banach space B. For each ¢ € B*, the action of the martingale
on ¢ define a real valued martingale with quadratic variation

[(Noise®, )] (T) = A(x; 0, 0) =:|| ¢ |[5

For Dj the dual of H5 and v < 1 introduce the functional

e v .
L(x) = —- |l x = b*(x) 1
Then large deviations and '-convergence enjoy the same

equivalence of the finite dimensional case.



Applications I: small martingales

Consider the SDE
X = \/Ea(—) "%
x(0) = Xxo

for some periodic continuous o. The law of the solution satisfies
a large deviations principle with speed ¢~ and rate

)
(x) = ;/0 dtA | x(t) |2

A _ 1
where A = Taz02(2)"



Applications II: singular limits

One can consider stochastic perturbations of PDEs and
investigate a joint vanishing noise - singular limit asymptotic.
This may have some physical motivations. Consider in
particular

o+ F(u)x = = (D(u)uy), + &7 (U(u) We)

I3
2 x
u(0, x) = up(x).

As well known, the limiting equation (¢ = 0) does not admit
smooth solutions, but admits infinitely many weak solutions. By
adapting the argument above, one can prove a large deviations
principle with speed ¢ =27 on a space of Young measures. The
corresponding rate functional vanishes on “measure valued
solutions” to the limiting equation.



Applications II: singular limits

(D(u)uy), + &7 <a(u) WE)

X

Since there are infinitely many measure valued solutions to the
limiting equation, one can investigate large deviations at the
scale e=2"*!. The corresponding (candidate) rate functional is
finite only on weak solutions of the limiting equation, and
quantifies how a weak solution violates the entropic condition.
In the case f(u) = o?(u) and D(u) = 1 such a functional is
consistent with the (candidate) rate functional for TASEP.



Possible applications

e Consider

X = b(x)+ VW
x(0) = X

with non-Lipschitz b. Is it easy to see that P* satisfies a
large deviations principle with speed ¢~ and the
Freidlin-Wentcell rate. But this functional has many zeros
(the solutions of the deterministic limiting equation). This
principles may perhaps be investigated approximating b
with a suitable b* and studying the I'-limit of the ¢
dependent Freidlin-Wentcell functional
e Investigate large deviations for multiscaled diffusions, as
like
x = b(x)+Veo(x,y)W
. 1 1 .
y = )+ ﬁS(y)W



