Large Deviations for Itô Diffusions

Mauro Mariani Université de Paris Dauphine Joint ideas with Lorenzo Bertini La Pietra June 26th 2008

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Γ-convergence

Let X be a Polish space. Let $\{I_{\varepsilon}\}$ be a sequence of functionals $I_{\varepsilon}: X \to [0, +\infty]$. We define two functionals $\Gamma-\underline{\lim}_{\varepsilon} I_{\varepsilon}, \Gamma-\overline{\lim}_{\varepsilon} I_{\varepsilon}: X \to [0, +\infty]$ as

Whenever Γ -<u>lim</u> $_{\varepsilon} I_{\varepsilon}(x) = \Gamma$ -<u>lim</u> $_{\varepsilon} I_{\varepsilon}(x) = I(x)$ for al $x \in X$, we say that $I_{\varepsilon} \Gamma$ -converges to I. The sequence $\{I_{\varepsilon}\}$ is called *equicoercive* iff for each M > 0 there exists an $\varepsilon_M > 0$ and a compact $K_M \subset X$ such that $\cup_{\varepsilon \leq \varepsilon_M} \{x \in X : I_{\varepsilon}(x) \leq M\} \subset K_M$.

Large Deviations

Let $\{a_{\varepsilon}\} \subset [0, 1]$ be such that $\lim_{\varepsilon \to 0} a_{\varepsilon} = 0$. Let $I: X \to [0, +\infty]$ be a lower semicontinuous functional on *X*. A sequence $\{\mathbb{P}^{\varepsilon}\} \subset \mathcal{P}(X)$ satisfies

 a *large deviations weak upper bound* with speed {a_ε⁻¹} and rate *I* iff for each compact set K ⊂ X

$$\overline{\lim_{\varepsilon}} a_{\varepsilon} \log \mathbb{P}^{\varepsilon}(K) \leq -\inf_{v \in K} I(v)$$
(1)

{ℙ^ε} satisfies a *large deviations (full) upper bound* with speed {a_ε⁻¹} and rate *I* iff for each closed set C ⊂ X

$$\overline{\lim_{\varepsilon}} a_{\varepsilon} \log \mathbb{P}^{\varepsilon}(\mathcal{C}) \leq -\inf_{v \in \mathcal{C}} I(v)$$
(2)

• $\{\mathbb{P}^{\varepsilon}\}\$ satisfies a *large deviations lower bound* with speed $\{a_{\varepsilon}^{-1}\}\$ and rate *I* iff for each open set $\mathcal{O} \subset X$

$$\underline{\lim_{\varepsilon}} a_{\varepsilon} \log \mathbb{P}^{\varepsilon}(\mathcal{O}) \geq -\inf_{v \in \mathcal{O}} I(v)$$
(3)

(日) (日) (日) (日) (日) (日) (日)

 $\{\mathbb{P}^{\varepsilon}\}\$ satisfies a *large deviation principle* iff an upper bound and a lower bound hold with the same speeds and rates. $\{\mathbb{P}^{\varepsilon}\}\$ is called *exponentially tight* iff there exists a sequence $\{K_{\ell}\}\$ of compact subsets of *X* such that

$$\overline{\lim_{\ell} \lim_{\varepsilon} \lim_{\varepsilon} a_{\varepsilon} \log \mathbb{P}^{\varepsilon}(K_{\ell})} = -\infty$$
(4)

Note that an exponentially tight family of probability measures satisfies a large deviations upper bound iff it satisfies a large deviations weak upper bound.

Consider the SDE

$$\dot{x} = b(x) + \sqrt{\varepsilon}\sigma(x)\dot{W}$$

 $x(0) = x_0$

and let \mathbb{P}^{ε} be the law of its solution. A classical result by Freidlin and Wentcell states that \mathbb{P}^{ε} satisfies a large deviations principle with speed ε^{-1} and rate

$$I(x) = \frac{1}{2} \int_0^T dt \, \frac{|\dot{x}(t) - b(x(t))|^2}{\sigma(x(t))\sigma(x(t))^{\dagger}}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Large Deviations for Itô processes

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Consider the more general case

$$\dot{x} = b^{\varepsilon}(x) + \sqrt{\varepsilon}\sigma^{\varepsilon}(x)\dot{W}$$

 $x(0) = x_0$

and for $\gamma < 1$ introduce the functional

$$I_{\varepsilon}(x) = \frac{\varepsilon^{-\gamma}}{2} \int_0^T dt \, \frac{|\dot{x}(t) - b^{\varepsilon}(x(t))|^2}{\sigma^{\varepsilon}(x(t))\sigma^{\varepsilon}(x(t))^{\dagger}}$$

Large Deviations for Itô processes

・ロト・ 日本・ 日本・ 日本・ 日本・ つくぐ

Consider the more general case

$$\dot{x} = b^{\varepsilon}(x) + \sqrt{\varepsilon}\sigma^{\varepsilon}(x)\dot{W}$$

x(0) = x₀

and for $\gamma < 1$ introduce the functional

$$I_{arepsilon}(x) = rac{arepsilon^{-\gamma}}{2} \int_{0}^{T} dt \, rac{|\,\dot{x}(t) - b^{arepsilon}(x(t))\,|^{2}}{\sigma^{arepsilon}(x(t))\sigma^{arepsilon}(x(t))^{\dagger}}$$

Then, w.r.t. to the speed $\varepsilon^{-1+\gamma}$

- If *I*_ε is equicoercive then ℙ^ε is exponentially tight.
- \mathbb{P}^{ε} satisfies a weak large deviations upper bound with rate Γ -<u>lim</u> I_{ε} .
- \mathbb{P}^{ε} satisfies a large deviations lower bound with rate Γ -lim I_{ε} .

Large Deviations for Itô processes

The statement also holds in infinite dimensions. Consider

)

$$\dot{x} = b^{\varepsilon}(x) + \sqrt{\varepsilon} \operatorname{Noise}^{\varepsilon}$$

 $x(0) = x_0$

where the noise term is a martingale with values in some Banach space *B*. For each $\varphi \in B^*$, the action of the martingale on φ define a real valued martingale with quadratic variation

$$\left[\langle \mathsf{Noise}^{arepsilon}, arphi
angle
ight](\mathcal{T}) = \mathcal{A}^{arepsilon}(\mathbf{x}; arphi, arphi) =: \mid\mid arphi \mid\mid_{\mathcal{H}^{arepsilon}_{\mathbf{x}}}^{2}$$

For $\mathcal{D}_{x}^{\varepsilon}$ the dual of $\mathcal{H}_{x}^{\varepsilon}$ and $\gamma < 1$ introduce the functional

$$I_{\varepsilon}(x) = rac{arepsilon^{-\gamma}}{2} \mid\mid \dot{x} - b^{\varepsilon}(x) \mid\mid^{2}_{\mathcal{D}^{arepsilon}_{x}}$$

Then large deviations and Γ -convergence enjoy the same equivalence of the finite dimensional case.

Applications I: small martingales

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Consider the SDE

$$\dot{x} = \sqrt{\varepsilon}\sigma\left(\frac{x}{\varepsilon^{\alpha}}\right)\dot{W}$$

 $x(0) = x_0$

for some periodic continuous σ . The law of the solution satisfies a large deviations principle with speed ε^{-1} and rate

$$I(x) = \frac{1}{2} \int_0^T dt \, \bar{A} \mid \dot{x}(t) \mid^2$$

where $\bar{A} = \frac{1}{\int dz \, \sigma^2(z)}$.

One can consider stochastic perturbations of PDEs and investigate a joint vanishing noise - singular limit asymptotic. This may have some physical motivations. Consider in particular

$$\partial_t u + f(u)_x = \frac{\varepsilon}{2} \left(D(u) u_x \right)_x + \varepsilon^{\gamma} \left(\sigma(u) \dot{W}^{\varepsilon} \right)_x$$
$$u(0, x) = u_0(x).$$

As well known, the limiting equation ($\varepsilon = 0$) does not admit smooth solutions, but admits infinitely many weak solutions. By adapting the argument above, one can prove a large deviations principle with speed $\varepsilon^{-2\gamma}$ on a space of Young measures. The corresponding rate functional vanishes on "measure valued solutions" to the limiting equation.

$$\partial_t u + f(u)_x = \frac{\varepsilon}{2} \left(D(u) u_x \right)_x + \varepsilon^{\gamma} \left(\sigma(u) \dot{W}^{\varepsilon} \right)_x \\ u(0, x) = u_0(x).$$

Since there are infinitely many measure valued solutions to the limiting equation, one can investigate large deviations at the scale $\varepsilon^{-2\gamma+1}$. The corresponding (candidate) rate functional is finite only on weak solutions of the limiting equation, and quantifies how a weak solution violates the entropic condition. In the case $f(u) = \sigma^2(u)$ and D(u) = 1 such a functional is consistent with the (candidate) rate functional for TASEP.

Possible applications

Consider

$$\dot{x} = b(x) + \sqrt{\varepsilon} \dot{W}$$

 $\kappa(0) = x_0$

)

with non-Lipschitz *b*. Is it easy to see that \mathbb{P}^{ε} satisfies a large deviations principle with speed ε^{-1} and the Freidlin-Wentcell rate. But this functional has many zeros (the solutions of the deterministic limiting equation). This principles may perhaps be investigated approximating *b* with a suitable b^{ε} and studying the Γ -limit of the ε dependent Freidlin-Wentcell functional

Investigate large deviations for multiscaled diffusions, as like

$$\dot{x} = b^{\varepsilon}(x) + \sqrt{\varepsilon}\sigma^{\varepsilon}(x,y)\dot{W} \dot{y} = \frac{1}{\varepsilon}\beta(y) + \frac{1}{\sqrt{\varepsilon}}s(y)\dot{W}$$