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Γ-convergence

Let X be a Polish space. Let {Iε} be a sequence of functionals
Iε : X → [0,+∞]. We define two functionals
Γ–limε Iε, Γ–limε Iε : X → [0,+∞] as(

Γ–limε Iε
)
(x) := inf

{
limε→0 Iε(xε), xε → x

}
(

Γ–limε Iε
)

(x) := inf
{

limε→0 Iε(xε), xε → x
}

Whenever Γ–limε Iε(x) = Γ–limε Iε(x) = I(x) for al x ∈ X , we say
that Iε Γ-converges to I. The sequence {Iε} is called
equicoercive iff for each M > 0 there exists an εM > 0 and a
compact KM ⊂ X such that ∪ε≤εM{x ∈ X : Iε(x) ≤ M} ⊂ KM .



Large Deviations

Let {aε} ⊂ [0,1] be such that limε→0 aε = 0. Let
I : X → [0,+∞] be a lower semicontinuous functional on X . A
sequence {Pε} ⊂ P(X ) satisfies
• a large deviations weak upper bound with speed {a−1

ε }
and rate I iff for each compact set K ⊂ X

lim
ε

aε log Pε(K ) ≤ − inf
v∈K

I(v) (1)

• {Pε} satisfies a large deviations (full) upper bound with
speed {a−1

ε } and rate I iff for each closed set C ⊂ X

lim
ε

aε log Pε(C) ≤ − inf
v∈C

I(v) (2)

• {Pε} satisfies a large deviations lower bound with speed
{a−1

ε } and rate I iff for each open set O ⊂ X

lim
ε

aε log Pε(O) ≥ − inf
v∈O

I(v) (3)



Large Deviations

{Pε} satisfies a large deviation principle iff an upper bound and
a lower bound hold with the same speeds and rates. {Pε} is
called exponentially tight iff there exists a sequence {K`} of
compact subsets of X such that

lim
`

lim
ε

aε log Pε(K`) = −∞ (4)

Note that an exponentially tight family of probability measures
satisfies a large deviations upper bound iff it satisfies a large
deviations weak upper bound.



A classical example: the vanishing noise limit

Consider the SDE

ẋ = b(x) +
√
εσ(x)Ẇ

x(0) = x0

and let Pε be the law of its solution. A classical result by Freidlin
and Wentcell states that Pε satisfies a large deviations principle
with speed ε−1 and rate

I(x) =
1
2

∫ T

0
dt
| ẋ(t)− b(x(t)) |2

σ(x(t))σ(x(t))†



Large Deviations for Itô processes

Consider the more general case

ẋ = bε(x) +
√
εσε(x)Ẇ

x(0) = x0

and for γ < 1 introduce the functional

Iε(x) =
ε−γ

2

∫ T

0
dt
| ẋ(t)− bε(x(t)) |2

σε(x(t))σε(x(t))†

Then, w.r.t. to the speed ε−1+γ

• If Iε is equicoercive then Pε is exponentially tight.
• Pε satisfies a weak large deviations upper bound with rate

Γ–lim Iε.
• Pε satisfies a large deviations lower bound with rate

Γ–lim Iε.
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ẋ = bε(x) +
√
εσε(x)Ẇ

x(0) = x0
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2

∫ T

0
dt
| ẋ(t)− bε(x(t)) |2

σε(x(t))σε(x(t))†
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Large Deviations for Itô processes

The statement also holds in infinite dimensions. Consider

ẋ = bε(x) +
√
εNoiseε

x(0) = x0

where the noise term is a martingale with values in some
Banach space B. For each ϕ ∈ B∗, the action of the martingale
on ϕ define a real valued martingale with quadratic variation[

〈Noiseε, ϕ〉
]
(T ) = Aε(x ;ϕ,ϕ) =:|| ϕ ||2Hε

x

For Dεx the dual of Hεx and γ < 1 introduce the functional

Iε(x) =
ε−γ

2
|| ẋ − bε(x) ||2Dε

x

Then large deviations and Γ-convergence enjoy the same
equivalence of the finite dimensional case.



Applications I: small martingales

Consider the SDE

ẋ =
√
εσ
( x
εα
)
Ẇ

x(0) = x0

for some periodic continuous σ. The law of the solution satisfies
a large deviations principle with speed ε−1 and rate

I(x) =
1
2

∫ T

0
dt Ā | ẋ(t) |2

where Ā = 1R
dz σ2(z)

.



Applications II: singular limits

One can consider stochastic perturbations of PDEs and
investigate a joint vanishing noise - singular limit asymptotic.
This may have some physical motivations. Consider in
particular

∂tu + f (u)x =
ε

2
(D(u)ux )x + εγ

(
σ(u)Ẇ ε

)
x

u(0, x) = u0(x).

As well known, the limiting equation (ε = 0) does not admit
smooth solutions, but admits infinitely many weak solutions. By
adapting the argument above, one can prove a large deviations
principle with speed ε−2γ on a space of Young measures. The
corresponding rate functional vanishes on “measure valued
solutions” to the limiting equation.



Applications II: singular limits

∂tu + f (u)x =
ε

2
(D(u)ux )x + εγ

(
σ(u)Ẇ ε

)
x

u(0, x) = u0(x).

Since there are infinitely many measure valued solutions to the
limiting equation, one can investigate large deviations at the
scale ε−2γ+1. The corresponding (candidate) rate functional is
finite only on weak solutions of the limiting equation, and
quantifies how a weak solution violates the entropic condition.
In the case f (u) = σ2(u) and D(u) = 1 such a functional is
consistent with the (candidate) rate functional for TASEP.



Possible applications

• Consider

ẋ = b(x) +
√
εẆ

x(0) = x0

with non-Lipschitz b. Is it easy to see that Pε satisfies a
large deviations principle with speed ε−1 and the
Freidlin-Wentcell rate. But this functional has many zeros
(the solutions of the deterministic limiting equation). This
principles may perhaps be investigated approximating b
with a suitable bε and studying the Γ-limit of the ε
dependent Freidlin-Wentcell functional

• Investigate large deviations for multiscaled diffusions, as
like

ẋ = bε(x) +
√
εσε(x , y)Ẇ

ẏ =
1
ε
β(y) +

1√
ε

s(y)Ẇ


