Invasion percolation in 2D

Bálint Vágvölgyi

Joint work with M. Damron and A. Sapozhnikov
Consider the square lattice \mathbb{Z}^2 with its set of nearest neighbour bonds \mathbb{E}^2.

Assign *uniform* $[0,1]$ random variables to each edge independently, denoted by $\tau(e)$ for an edge e.

For a given p we say that an edge e is p-open if $\tau(e) \leq p$.

This model is called Bernoulli percolation with parameter p.

The same model can be obtained by declaring each edge open with probability p and closed otherwise, independently of each other.
Bernoulli bond percolation

Consider the square lattice \mathbb{Z}^2 with its set of nearest neighbour bonds \mathbb{E}^2.

Assign uniform $[0,1]$ random variables to each edge independently, denoted by $\tau(e)$ for an edge e.

For a given p we say that an edge e is p-open if $\tau(e) \leq p$.

This model is called Bernoulli percolation with parameter p.

The same model can be obtained by declaring each edge open with probability p and closed otherwise, independently of each other.
Consider the square lattice \mathbb{Z}^2 with its set of nearest neighbour bonds \mathbb{E}^2.

Assign *uniform* $[0,1]$ random variables to each edge independently, denoted by $\tau(e)$ for an edge e.

For a given p we say that an edge e is p-open if $\tau(e) \leq p$.

This model is called Bernoulli percolation with parameter p.

The same model can be obtained by declaring each edge open with probability p and closed otherwise, independently of each other.
Consider the square lattice \mathbb{Z}^2 with its set of nearest neighbour bonds \mathbb{E}^2.

Assign uniform $[0,1]$ random variables to each edge independently, denoted by $\tau(e)$ for an edge e.

For a given p we say that an edge e is p-open if $\tau(e) \leq p$.

This model is called Bernoulli percolation with parameter p.

The same model can be obtained by declaring each edge open with probability p and closed otherwise, independently of each other.
Consider the square lattice \mathbb{Z}^2 with its set of nearest neighbour bonds \mathbb{E}^2.

Assign uniform $[0,1]$ random variables to each edge independently, denoted by $\tau(e)$ for an edge e.

For a given p we say that an edge e is p-open if $\tau(e) \leq p$.

This model is called Bernoulli percolation with parameter p.

The same model can be obtained by declaring each edge open with probability p and closed otherwise, independently of each other.
Some important results for Bernoulli percolation

- Let $\Theta(p) = \mathbb{P}_p(0 \leftrightarrow \infty)$ be the percolation function.
- Let $p_c = \inf\{0 \leq p \leq 1 : \Theta(p) > 0\}$ be the critical probability.
- For all $p > p_c$ there is a unique infinite p-open cluster, denoted by C_p.
- $p_c = 1/2$ and $\Theta(p_c) = 0$.
- Russo, Seymour, Welsh theorem: For any $k > 0$ let $A_{n,k}$ be the event that the box $[0, kn] \times [0, n]$ contains a horizontal open crossing and let $p \geq p_c$. Then there exists a constant δ_k, independent of n and p such that $\mathbb{P}_p(A_{n,k}) > \delta_k$.
- Consequence: For all $p \geq p_c$, the origin is surrounded by infinitely many open circuits with probability one.
Some important results for Bernoulli percolation

- Let $\Theta(p) = \mathbb{P}_p(0 \leftrightarrow \infty)$ be the percolation function.
- Let $p_c = \inf \{0 \leq p \leq 1 : \Theta(p) > 0\}$ be the critical probability.
- For all $p > p_c$ there is a unique infinite p-open cluster, denoted by C_p.
- $p_c = 1/2$ and $\Theta(p_c) = 0$.
- Russo, Seymour, Welsh theorem: For any $k > 0$ let $A_{n,k}$ be the event that the box $[0, kn] \times [0, n]$ contains a horizontal open crossing and let $p \geq p_c$. Then there exists a constant δ_k, independent of n and p such that $\mathbb{P}_p(A_{n,k}) > \delta_k$.
- Consequence: For all $p \geq p_c$, the origin is surrounded by infinitely many open circuits with probability one.
Some important results for Bernoulli percolation

- Let $\Theta(p) = \mathbb{P}_p(0 \leftrightarrow \infty)$ be the percolation function.
- Let $p_c = \inf\{0 \leq p \leq 1 : \Theta(p) > 0\}$ be the critical probability.
- For all $p > p_c$ there is a unique infinite p-open cluster, denoted by C_p.
- $p_c = 1/2$ and $\Theta(p_c) = 0$.
- Russo, Seymour, Welsh theorem: For any $k > 0$ let $A_{n,k}$ be the event that the box $[0, kn] \times [0, n]$ contains a horizontal open crossing and let $p \geq p_c$. Then there exists a constant δ_k, independent of n and p such that $\mathbb{P}_p(A_{n,k}) > \delta_k$.
- Consequence: For all $p \geq p_c$, the origin is surrounded by infinitely many open circuits with probability one.
Some important results for Bernoulli percolation

- Let $\Theta(p) = \mathbb{P}_p(0 \leftrightarrow \infty)$ be the percolation function.
- Let $p_c = \inf \{0 \leq p \leq 1 : \Theta(p) > 0\}$ be the critical probability.
- For all $p > p_c$ there is a unique infinite p-open cluster, denoted by C_p.
- $p_c = 1/2$ and $\Theta(p_c) = 0$.
- Russo, Seymour, Welsh theorem: For any $k > 0$ let $A_{n,k}$ be the event that the box $[0, kn] \times [0, n]$ contains a horizontal open crossing and let $p \geq p_c$. Then there exists a constant δ_k, independent of n and p such that $\mathbb{P}_p(A_{n,k}) > \delta_k$.
- Consequence: For all $p \geq p_c$, the origin is surrounded by infinitely many open circuits with probability one.
Some important results for Bernoulli percolation

- Let $\Theta(p) = \mathbb{P}_p(0 \leftrightarrow \infty)$ be the percolation function.
- Let $p_c = \inf \{0 \leq p \leq 1 : \Theta(p) > 0\}$ be the critical probability.
- For all $p > p_c$ there is a unique infinite p-open cluster, denoted by C_p.
- $p_c = 1/2$ and $\Theta(p_c) = 0$.
- Russo, Seymour, Welsh theorem: For any $k > 0$ let $A_{n,k}$ be the event that the box $[0, kn] \times [0, n]$ contains a horizontal open crossing and let $p \geq p_c$. Then there exists a constant δ_k, independent of n and p such that $\mathbb{P}_p(A_{n,k}) > \delta_k$.
- Consequence: For all $p \geq p_c$, the origin is surrounded by infinitely many open circuits with probability one.
Some important results for Bernoulli percolation

- Let $\Theta(p) = \mathbb{P}_p(0 \leftrightarrow \infty)$ be the percolation function.
- Let $p_c = \inf\{0 \leq p \leq 1 : \Theta(p) > 0\}$ be the critical probability.
- For all $p > p_c$ there is a unique infinite p-open cluster, denoted by C_p.
- $p_c = 1/2$ and $\Theta(p_c) = 0$.
- Russo, Seymour, Welsh theorem: For any $k > 0$ let $A_{n,k}$ be the event that the box $[0, kn] \times [0, n]$ contains a horizontal open crossing and let $p \geq p_c$. Then there exists a constant δ_k, independent of n and p such that $\mathbb{P}_p(A_{n,k}) > \delta_k$.
- Consequence: For all $p \geq p_c$, the origin is surrounded by infinitely many open circuits with probability one.
Assign again *uniform* $[0,1]$ random variables to each edge independently, denoted by $\tau(e)$ for an edge e.

The invaded region $S(v)$ of a vertex v is defined as the increasing union of subgraphs $S_n(v)$, where

- $S_0(v) = \{v\}$
- $S_{n+1}(v)$ is $S_n(v)$ together with the lowest edge not in $S_n(v)$ but incident to some vertex in S_n

In this talk we always consider the invaded region of the origin and we write $S = S(0)$.
Assign again *uniform* $[0,1]$ random variables to each edge independently, denoted by $\tau(e)$ for an edge e.

The invaded region $S(v)$ of a vertex v is defined as the increasing union of subgraphs $S_n(v)$, where

- $S_0(v) = \{v\}$
- $S_{n+1}(v)$ is $S_n(v)$ together with the lowest edge not in $S_n(v)$ but incident to some vertex in S_n

In this talk we always consider the invaded region of the origin and we write $S = S(0)$.
Assign again *uniform* $[0,1]$ random variables to each edge independently, denoted by $\tau(e)$ for an edge e.

The invaded region $S(v)$ of a vertex v is defined as the increasing union of subgraphs $S_n(v)$, where

- $S_0(v) = \{v\}$
- $S_{n+1}(v)$ is $S_n(v)$ together with the lowest edge not in $S_n(v)$ but incident to some vertex in S_n.

In this talk we always consider the invaded region of the origin and we write $S = S(0)$.
Assign again *uniform* $[0,1]$ random variables to each edge independently, denoted by $\tau(e)$ for an edge e.

The invaded region $S(v)$ of a vertex v is defined as the increasing union of subgraphs $S_n(v)$, where

- $S_0(v) = \{v\}$
- $S_{n+1}(v)$ is $S_n(v)$ together with the lowest edge not in $S_n(v)$ but incident to some vertex in S_n

In this talk we always consider the invaded region of the origin and we write $S = S(0)$.
Assign again *uniform* $[0,1]$ random variables to each edge independently, denoted by $\tau(e)$ for an edge e.

The invaded region $S(v)$ of a vertex v is defined as the increasing union of subgraphs $S_n(v)$, where

- $S_0(v) = \{v\}$
- $S_{n+1}(v)$ is $S_n(v)$ together with the lowest edge not in $S_n(v)$ but incident to some vertex in S_n

In this talk we always consider the invaded region of the origin and we write $S = S(0)$.
For all $p > p_c$ we have that $S \cap C_p \neq \emptyset$, since the origin is surrounded by infinitely many p-open circuit.

It is clear from the invasion mechanism that if $S_n \cap C_p \neq \emptyset$ for some $n > 0$ then $S \setminus S_n \subset C_p$.

By other words: If for any p the invasion hits the infinite p-open cluster, it will never leave this cluster again.

If e_i is the edge invaded at time i then $\limsup_{i \to \infty} \tau(e_i) = p_c$.

Since there is no percolation at p_c we get that $\hat{\tau} = \max_{e \in E_\infty} \tau(e)$ exists and is greater than p_c.

Bálint Vágvölgyi

Invasion percolation in 2D
Results for invasion percolation

- For all $p > p_c$ we have that $S \cap C_p \neq \emptyset$, since the origin is surrounded by infinitely many p-open circuit.
- It is clear from the invasion mechanism that if $S_n \cap C_p \neq \emptyset$ for some $n > 0$ then $S \setminus S_n \subset C_p$
- By other words: If for any p the invasion hits the infinite p-open cluster, it will never leave this cluster again.
- If e_i is the edge invaded at time i then $\limsup_{i \to \infty} \tau(e_i) = p_c$.
- Since there is no percolation at p_c we get that $\hat{\tau} = \max_{e \in E_\infty} \tau(e)$ exists and is greater than p_c.
Results for invasion percolation

- For all $p > p_c$ we have that $S \cap C_p \neq \emptyset$, since the origin is surrounded by infinitely many p-open circuit.
- It is clear from the invasion mechanism that if $S_n \cap C_p \neq \emptyset$ for some $n > 0$ then $S \setminus S_n \subset C_p$.
- By other words: If for any p the invasion hits the infinite p-open cluster, it will never leave this cluster again.
- If e_i is the edge invaded at time i then $\limsup_{i \to \infty} \tau(e_i) = p_c$.
- Since there is no percolation at p_c we get that $\hat{\tau} = \max_{e \in E_\infty} \tau(e)$ exists and is greater than p_c.
Results for invasion percolation

- For all $p > p_c$ we have that $S \cap C_p \neq \emptyset$, since the origin is surrounded by infinitely many p-open circuit.
- It is clear from the invasion mechanism that if $S_n \cap C_p \neq \emptyset$ for some $n > 0$ then $S \setminus S_n \subset C_p$.
- By other words: If for any p the invasion hits the infinite p-open cluster, it will never leave this cluster again.
- If e_i is the edge invaded at time i then $\limsup_{i \to \infty} \tau(e_i) = p_c$.
- Since there is no percolation at p_c we get that $\hat{\tau} = \max_{e \in E_\infty} \tau(e)$ exists and is greater than p_c.
Definition of the first pond

- Let \hat{e} be the edge where the maximum value of τ is taken, namely $\tau(\hat{e}) = \hat{\tau}$.
- \hat{e} exists and it is well-defined with probability 1.
- Suppose that \hat{e} is added to the invasion at time $i + 1$, then the graph $S_i = \hat{V}_1$ is called the first pond of the invasion or the first pond of the origin.
Definition of the first pond

- Let \(\hat{e} \) be the edge where the maximum value of \(\tau \) is taken, namely \(\tau(\hat{e}) = \hat{\tau} \).
- \(\hat{e} \) exists and it is well-defined with probability 1.
- Suppose that \(\hat{e} \) is added to the invasion at time \(i + 1 \), then the graph \(S_i = \hat{V}_1 \) is called the first pond of the invasion or the first pond of the origin.
Definition of the first pond

- Let \(\hat{e} \) be the edge where the maximum value of \(\tau \) is taken, namely \(\tau(\hat{e}) = \hat{\tau} \).
- \(\hat{e} \) exists and it is well-defined with probability 1.
- Suppose that \(\hat{e} \) is added to the invasion at time \(i + 1 \), then the graph \(S_i = \hat{V}_1 \) is called the first pond of the invasion or the first pond of the origin.
Further ponds

- Assume that the first pond is S_{i_1} for some i_1.
- Then $\max_{e_i \in E_\infty, i > i_1} \tau(e)$ exists and greater than p_c.
- Let \hat{e}_2 be the edge where this value is taken.
- If \hat{e}_2 is invaded at time $i_2 + 1$, than the graph $S_{i_2} \setminus S_{i_1}$ is the second pond of the invasion.
- The other ponds of the invasion can be defined in similar way.
Further ponds

- Assume that the first pond is S_{i_1} for some i_1.
- Then $\max_{e_i \in E_\infty, i > i_1} \tau(e)$ exists and greater than p_c.
 - Let \hat{e}_2 be the edge where this value is taken.
 - If \hat{e}_2 is invaded at time $i_2 + 1$, then the graph $S_{i_2} \setminus S_{i_1}$ is the second pond of the invasion.
 - The other ponds of the invasion can be defined in similar way.
Further ponds

- Assume that the first pond is S_{i_1} for some i_1.
- Then $\max_{e_i \in E_\infty, i > i_1} \tau(e)$ exists and greater than p_c.
- Let \hat{e}_2 be the edge where this value is taken.
- If \hat{e}_2 is invaded at time $i_2 + 1$, than the graph $S_{i_2} \setminus S_{i_1}$ is the second pond of the invasion.
- The other ponds of the invasion can be defined in similar way.
Further ponds

- Assume that the first pond is S_{i_1} for some i_1.
- Then $\max_{e_i \in E_\infty, i > i_1} \tau(e)$ exists and greater than p_c.
- Let \hat{e}_2 be the edge where this value is taken.
- If \hat{e}_2 is invaded at time $i_2 + 1$, than the graph $S_{i_2} \setminus S_{i_1}$ is the second pond of the invasion.
- The other ponds of the invasion can be defined in similar way.
Assume that the first pond is S_{i_1} for some i_1.

Then $\max_{e_i \in E_\infty, i > i_1} \tau(e)$ exists and greater than p_c.

Let \hat{e}_2 be the edge where this value is taken.

If \hat{e}_2 is invaded at time $i_2 + 1$, than the graph $S_{i_2} \setminus S_{i_1}$ is the second pond of the invasion.

The other ponds of the invasion can be defined in similar way.