The high temperature Ising model on the triangular lattice is a critical percolation model

András Bálint

Joint work with Federico Camia and Ronald Meester, Vrije Universiteit Amsterdam

Outline The Ising model on T Our model

$oldsymbol{1}$ The Ising model on $\mathbb T$

- \bullet The lattice ${\mathbb T}$ and the model
- Random-cluster representation

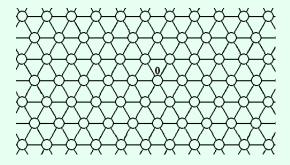
2 Our model

- Definition
- Results
- Related results, open questions

Outline The Ising model on T Our model

The lattice T and the model Random-cluster representation

The triangular lattice ${\mathbb T}$



Vertex set $\mathcal{V}_{\mathbb{T}}$, edge set $\mathcal{E}_{\mathbb{T}}$, special vertex: **0**, called *origin*

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

- Dependent site percolation model, configuration space: $\Omega:=\{-1,+1\}^{\mathcal{V}_{\mathbb{T}}}.$
- Two parameters: inverse temperature β ≥ 0, external field h; we only consider h = 0.
- Standard: ∃β_c ∈ (0,∞) s.t. for β < β_c, there exists a unique lsing Gibbs measure on Ω, which we denote by μ_β.
- A way to obtain μ_{β} (through the *random-cluster representation* of the Ising model) will follow.

- Dependent site percolation model, configuration space: $\Omega:=\{-1,+1\}^{\mathcal{V}_{\mathbb{T}}}.$
- Two parameters: inverse temperature β ≥ 0, external field h; we only consider h = 0.
- Standard: ∃β_c ∈ (0,∞) s.t. for β < β_c, there exists a unique lsing Gibbs measure on Ω, which we denote by μ_β.
- A way to obtain μ_{β} (through the *random-cluster representation* of the Ising model) will follow.

- Dependent site percolation model, configuration space: $\Omega:=\{-1,+1\}^{\mathcal{V}_{\mathbb{T}}}.$
- Two parameters: inverse temperature β ≥ 0, external field h; we only consider h = 0.
- Standard: ∃β_c ∈ (0,∞) s.t. for β < β_c, there exists a unique lsing Gibbs measure on Ω, which we denote by μ_β.
- A way to obtain μ_{β} (through the *random-cluster* representation of the Ising model) will follow.

- Dependent site percolation model, configuration space: $\Omega:=\{-1,+1\}^{\mathcal{V}_{\mathbb{T}}}.$
- Two parameters: inverse temperature β ≥ 0, external field h; we only consider h = 0.
- Standard: ∃β_c ∈ (0,∞) s.t. for β < β_c, there exists a unique lsing Gibbs measure on Ω, which we denote by μ_β.
- A way to obtain μ_{β} (through the *random-cluster* representation of the lsing model) will follow.

Random-cluster measures on finite graphs

- $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ a finite graph. For $\eta \in \{0,1\}^{\mathcal{E}}$, we define
 - the set of open edges in η : $\mathcal{E}_{\mathrm{open}}(\eta) = \{e \in \mathcal{E} : \eta(e) = 1\},$
 - $k(\eta)$ as the number of components in the graph $G_{\text{open}}(\eta) = (\mathcal{V}, \mathcal{E}_{\text{open}}(\eta)).$

For $p \in (0,1), q > 0$, we define the *random-cluster measure* $\Phi^{G}_{p,q}$ so that

$$\Phi^G_{p,q}(\eta) \propto \prod_{e \in \mathcal{E}} p^{\eta(e)} (1-p)^{1-\eta(e)} q^{k(\eta)}.$$

Components in $G_{\text{open}}(\eta)$ are called *(open)* FK clusters (in η).

(日)(4月)(4日)(4日)(5)

Random-cluster measures on finite graphs

- $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ a finite graph. For $\eta \in \{0,1\}^{\mathcal{E}}$, we define
 - the set of open edges in η : $\mathcal{E}_{\mathrm{open}}(\eta) = \{e \in \mathcal{E} : \eta(e) = 1\},$
 - $k(\eta)$ as the number of components in the graph $G_{\text{open}}(\eta) = (\mathcal{V}, \mathcal{E}_{\text{open}}(\eta)).$

For $p \in (0,1), q > 0$, we define the random-cluster measure $\Phi_{p,q}^{G}$ so that

$$\Phi^{G}_{
ho,q}(\eta) \propto \prod_{e \in \mathcal{E}} p^{\eta(e)} (1-p)^{1-\eta(e)} q^{k(\eta)}.$$

Components in $G_{\text{open}}(\eta)$ are called *(open)* FK clusters (in η).

Outline The Ising model on T Our model

The lattice ${\mathbb T}$ and the model Random-cluster representation

Example

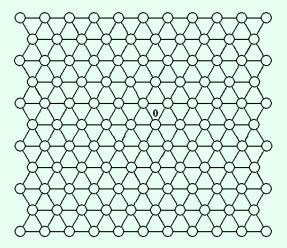


Figure: The graph

András Bálint

イロト イラト イミト モラ モ つへで The high temperature Ising model on the triangular lattice i Outline The Ising model on T Our model

The lattice ${\mathbb T}$ and the model Random-cluster representation

Example

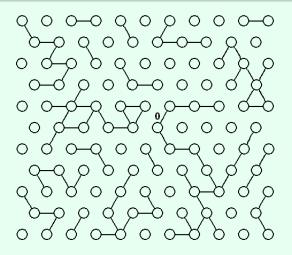


Figure: p = 1/4, q = 1

・ロト ・聞ト ・ヨト ・ヨト

E

Properties of the random-cluster measure $\Phi_{p,2}$

A random-cluster measure $\Phi_{p,2}$ on \mathbb{T} is obtained as a limit of $\Phi_{p,2}^G$ as $G \uparrow \mathbb{T}$.

Theorem

There exists a critical value $0 < p_c < 1$ such that for a random-cluster measure $\Phi_{p,2},$

$$\begin{pmatrix} \Phi_{p,2}(\eta : \exists \infty FK \ cluster \ in \ \eta) = 0 & if \ p < p_c, \\ \Phi_{p,2}(\eta : \exists \infty FK \ cluster \ in \ \eta) = 1 & if \ p > p_c. \end{cases}$$

If $p < p_c$, then $\Phi_{p,2}$ is unique.

$\mu_{\beta}:$ Ising measure, $\beta_{\textit{c}}:$ critical inverse temperature in the Ising model on $\mathbb{T}.$

Theorem (The random-cluster representation of the Ising model) For $\beta < \beta_c$, a configuration in Ω distributed according to μ_β can be obtained by the following procedure.

- Set $p = 1 e^{-\beta}$.
- Step 1: Draw a bond configuration η with distribution $\Phi_{p,2}$.

 Step 2: For each FK cluster in η, assign to all vertices in the cluster spin + with probability 1/2 and spin - with probability 1/2, independently for different FK clusters.

$\mu_{\beta}:$ Ising measure, $\beta_{\textit{c}}:$ critical inverse temperature in the Ising model on $\mathbb{T}.$

Theorem (The random-cluster representation of the Ising model)

For $\beta < \beta_c$, a configuration in Ω distributed according to μ_β can be obtained by the following procedure.

• Set
$$p = 1 - e^{-\beta}$$
.

• Step 1: Draw a bond configuration η with distribution $\Phi_{p,2}$.

 Step 2: For each FK cluster in η, assign to all vertices in the cluster spin + with probability 1/2 and spin - with probability 1/2, independently for different FK clusters.

$\mu_{\beta}:$ Ising measure, $\beta_{\textit{c}}:$ critical inverse temperature in the Ising model on $\mathbb{T}.$

Theorem (The random-cluster representation of the Ising model)

For $\beta < \beta_c$, a configuration in Ω distributed according to μ_β can be obtained by the following procedure.

- Set $p = 1 e^{-\beta}$.
- Step 1: Draw a bond configuration η with distribution $\Phi_{p,2}$.

 Step 2: For each FK cluster in η, assign to all vertices in the cluster spin + with probability 1/2 and spin - with probability 1/2, independently for different FK clusters.

《曰》 《聞》 《臣》 《臣》 三臣 …

$\mu_{\beta}:$ Ising measure, $\beta_{\textit{c}}:$ critical inverse temperature in the Ising model on $\mathbb{T}.$

Theorem (The random-cluster representation of the Ising model)

For $\beta < \beta_c$, a configuration in Ω distributed according to μ_β can be obtained by the following procedure.

- Set $p = 1 e^{-\beta}$.
- Step 1: Draw a bond configuration η with distribution $\Phi_{p,2}$.
- Step 2: For each FK cluster in η, assign to all vertices in the cluster spin + with probability 1/2 and spin - with probability 1/2, independently for different FK clusters.

《曰》 《聞》 《臣》 《臣》 三臣 …

- Fix $\beta < \beta_c, r \in [0, 1]$, and set $p = 1 e^{-\beta}$.
- Step 1: Draw a bond configuration η with distribution $\Phi_{p,2}$.
- Step 2: For each FK cluster in η, assign to all vertices in the cluster spin + with probability r, and spin with probability 1 r, independently for different FK clusters.
- Denote the resulting joint measure on $\{0,1\}^{\mathcal{E}_{\mathbb{T}}} \times \Omega$ by $\mathbb{P}_{\beta,r}$. Note:
 - the marginal of $\mathbb{P}_{\beta,1/2}$ on Ω is μ_{β} ,
 - $\beta = 0 \leftrightarrow \text{Bernoulli site percolation with parameter } r$.

- Fix $\beta < \beta_c, r \in [0, 1]$, and set $p = 1 e^{-\beta}$.
- Step 1: Draw a bond configuration η with distribution $\Phi_{p,2}$.
- Step 2: For each FK cluster in η, assign to all vertices in the cluster spin + with probability r, and spin with probability 1 r, independently for different FK clusters.
- Denote the resulting joint measure on $\{0,1\}^{\mathcal{E}_{\mathbb{T}}} \times \Omega$ by $\mathbb{P}_{\beta,r}$. Note:
 - the marginal of $\mathbb{P}_{\beta,1/2}$ on Ω is μ_{β} ,
 - $\beta = 0 \leftrightarrow \text{Bernoulli site percolation with parameter } r$.

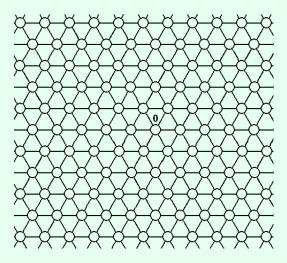
- Fix $\beta < \beta_c, r \in [0, 1]$, and set $p = 1 e^{-\beta}$.
- Step 1: Draw a bond configuration η with distribution $\Phi_{p,2}$.
- Step 2: For each FK cluster in η, assign to all vertices in the cluster spin + with probability r, and spin with probability 1 r, independently for different FK clusters.
- Denote the resulting joint measure on $\{0,1\}^{\mathcal{E}_{\mathbb{T}}} \times \Omega$ by $\mathbb{P}_{\beta,r}$. Note:
 - the marginal of $\mathbb{P}_{\beta,1/2}$ on Ω is μ_{β} ,
 - $\beta = 0 \leftrightarrow \text{Bernoulli site percolation with parameter } r$.

(日) (四) (三) (三) (三)

- Fix $\beta < \beta_c, r \in [0, 1]$, and set $p = 1 e^{-\beta}$.
- Step 1: Draw a bond configuration η with distribution $\Phi_{p,2}$.
- Step 2: For each FK cluster in η, assign to all vertices in the cluster spin + with probability r, and spin with probability 1 r, independently for different FK clusters.
- Denote the resulting joint measure on $\{0,1\}^{\mathcal{E}_{\mathbb{T}}} \times \Omega$ by $\mathbb{P}_{\beta,r}$. Note:
 - the marginal of $\mathbb{P}_{\beta,1/2}$ on Ω is μ_{β} ,
 - $\beta = 0 \leftrightarrow \text{Bernoulli site percolation with parameter } r$.

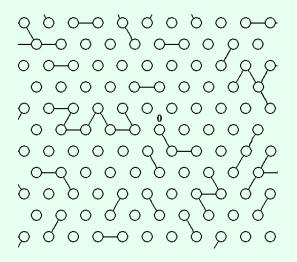
- Fix $\beta < \beta_c, r \in [0, 1]$, and set $p = 1 e^{-\beta}$.
- Step 1: Draw a bond configuration η with distribution $\Phi_{p,2}$.
- Step 2: For each FK cluster in η, assign to all vertices in the cluster spin + with probability r, and spin with probability 1 r, independently for different FK clusters.
- Denote the resulting joint measure on $\{0,1\}^{\mathcal{E}_{\mathbb{T}}} \times \Omega$ by $\mathbb{P}_{\beta,r}$. Note:
 - the marginal of $\mathbb{P}_{\beta,1/2}$ on Ω is μ_{β} ,
 - $\beta = 0 \leftrightarrow \text{Bernoulli site percolation with parameter } r$.

Example



◆□→ ◆□→ ◆注→ ◆注→ □注□

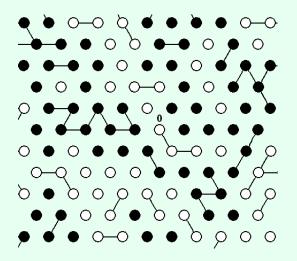
Example



・ロト ・回ト ・ヨト ・ヨト

臣

Example



- Question: Is the origin in an infinite (+)-cluster?
- $\Theta(\beta, r) := \mathbb{P}_{\beta, r}(\mathbf{0} \text{ is in an infinite } (+)\text{-cluster}).$
- Clear: For all β, Θ(β,0) = 0, Θ(β,1) = 1, Θ(β,r) is increasing in r.
- Critical value: $r_c(\beta) := \sup\{r \in [0,1] : \Theta(\beta,r) = 0\}.$

- Question: Is the origin in an infinite (+)-cluster?
- $\Theta(\beta, r) := \mathbb{P}_{\beta, r}(\mathbf{0} \text{ is in an infinite } (+)\text{-cluster}).$
- Clear: For all β, Θ(β,0) = 0, Θ(β,1) = 1, Θ(β,r) is increasing in r.
- Critical value: $r_c(\beta) := \sup\{r \in [0,1] : \Theta(\beta,r) = 0\}.$

- Question: Is the origin in an infinite (+)-cluster?
- $\Theta(\beta, r) := \mathbb{P}_{\beta, r}(\mathbf{0} \text{ is in an infinite } (+)\text{-cluster}).$
- Clear: For all β, Θ(β,0) = 0, Θ(β,1) = 1, Θ(β, r) is increasing in r.
- Critical value: $r_c(\beta) := \sup\{r \in [0,1] : \Theta(\beta,r) = 0\}.$

- Question: Is the origin in an infinite (+)-cluster?
- $\Theta(\beta, r) := \mathbb{P}_{\beta, r}(\mathbf{0} \text{ is in an infinite } (+)\text{-cluster}).$
- Clear: For all β, Θ(β,0) = 0, Θ(β,1) = 1, Θ(β, r) is increasing in r.
- Critical value: $r_c(\beta) := \sup\{r \in [0,1] : \Theta(\beta,r) = 0\}.$

Main results

Theorem (Bálint, Camia, Meester, 2008)

For all $\beta < \beta_c$,

$$r_c(\beta)=1/2.$$

Moreover, the phase transition at r = 1/2 is sharp, i.e.,

- If r < 1/2, the distribution of the size of the (+)-cluster of the origin has an exponentially decaying tail.
- If r = 1/2, $\Theta(\beta, 1/2) = 0$ and the mean size of the (+)-cluster of the origin is infinite.
- If r > 1/2, there exists a.s. a unique infinite (+)-cluster.

Theorem (Bálint, Camia, Meester, 2008)

For each $\beta < \beta_c$, the function $\Theta(\beta, r)$ is continuous in r.

(D) (A) (3) (3)

Related results, conjectures

Conjecture

The high temperature $(\beta < \beta_c)$ lsing model on the *triangular* lattice \mathbb{T} with no external field shows critical behaviour and is in the universality class of Bernoulli (independent) percolation.

- Main result (i.e., $r_c(\beta) = 1/2$) confirms criticality.
- Choice of $\mathbb T$ is important. High temperature Ising model on $\mathbb Z^2$ is subcritical:
 - for $\beta = 0$, known: $r_c^{\mathbb{Z}^2}(0) = r_c^{\mathbb{Z}^2, \text{Bernoulli}} > 1/2;$
 - for all β < β_c, the distribution of the size of the (+)-cluster of the origin has an exponentially decaying tail (Higuchi (1993), van den Berg (2007)), and this implies r_c(β) > 1/2.

・ロト ・四ト ・ヨト ・ヨト 三日

Related results, conjectures

Conjecture

The high temperature $(\beta < \beta_c)$ lsing model on the *triangular* lattice \mathbb{T} with no external field shows critical behaviour and is in the universality class of Bernoulli (independent) percolation.

- Main result (i.e., $r_c(eta)=1/2$) confirms criticality.
- Choice of $\mathbb T$ is important. High temperature Ising model on $\mathbb Z^2$ is subcritical:
 - for $\beta = 0$, known: $r_c^{\mathbb{Z}^2}(0) = r_c^{\mathbb{Z}^2, \text{Bernoulli}} > 1/2;$
 - for all β < β_c, the distribution of the size of the (+)-cluster of the origin has an exponentially decaying tail (Higuchi (1993), van den Berg (2007)), and this implies r_c(β) > 1/2.

《曰》 《聞》 《臣》 《臣》 三臣 …

Related results, conjectures

Conjecture

The high temperature $(\beta < \beta_c)$ lsing model on the *triangular* lattice \mathbb{T} with no external field shows critical behaviour and is in the universality class of Bernoulli (independent) percolation.

- Main result (i.e., $r_c(\beta) = 1/2$) confirms criticality.
- Choice of $\mathbb T$ is important. High temperature Ising model on $\mathbb Z^2$ is subcritical:
 - for $\beta = 0$, known: $r_c^{\mathbb{Z}^2}(0) = r_c^{\mathbb{Z}^2, \text{Bernoulli}} > 1/2;$
 - for all β < β_c, the distribution of the size of the (+)-cluster of the origin has an exponentially decaying tail (Higuchi (1993), van den Berg (2007)), and this implies r_c(β) > 1/2.

Related results, conjectures

Conjecture

The high temperature $(\beta < \beta_c)$ lsing model on the *triangular* lattice \mathbb{T} with no external field shows critical behaviour and is in the universality class of Bernoulli (independent) percolation.

- Main result (i.e., $r_c(\beta) = 1/2$) confirms criticality.
- Choice of $\mathbb T$ is important. High temperature Ising model on $\mathbb Z^2$ is subcritical:
 - for $\beta = 0$, known: $r_c^{\mathbb{Z}^2}(0) = r_c^{\mathbb{Z}^2, \text{Bernoulli}} > 1/2;$
 - for all β < β_c, the distribution of the size of the (+)-cluster of the origin has an exponentially decaying tail (Higuchi (1993), van den Berg (2007)), and this implies r_c(β) > 1/2.

(ロ) (部) (E) (E) (E)

Related results, conjectures

Conjecture

The high temperature $(\beta < \beta_c)$ lsing model on the *triangular* lattice \mathbb{T} with no external field shows critical behaviour and is in the universality class of Bernoulli (independent) percolation.

- Main result (i.e., $r_c(\beta) = 1/2$) confirms criticality.
- Choice of $\mathbb T$ is important. High temperature Ising model on $\mathbb Z^2$ is subcritical:
 - for $\beta = 0$, known: $r_c^{\mathbb{Z}^2}(0) = r_c^{\mathbb{Z}^2, \operatorname{Bernoulli}} > 1/2;$
 - for all $\beta < \beta_c$, the distribution of the size of the (+)-cluster of the origin has an exponentially decaying tail (Higuchi (1993), van den Berg (2007)), and this implies $r_c(\beta) > 1/2$.

◆□→ ◆□→ ◆注→ ◆注→ □注□

Open questions

- What else can be proved on the square lattice? (We expect $r_c(\beta) + r_c^*(\beta) = 1$, where $r_c^*(\beta)$ is the critical value for the matching lattice of \mathbb{Z}^2 .)
- What happens if $\Phi_{p,2}$ is replaced by $\Phi_{p,q}$ in the definition of the model?

For q = 1, we have:

•
$$r_c = 1/2$$
 on \mathbb{T} ,

• $r_c + r_c^* = 1$ on \mathbb{Z}^2 .

Thank you for your attention!

- What else can be proved on the square lattice? (We expect $r_c(\beta) + r_c^*(\beta) = 1$, where $r_c^*(\beta)$ is the critical value for the matching lattice of \mathbb{Z}^2 .)
- What happens if $\Phi_{p,2}$ is replaced by $\Phi_{p,q}$ in the definition of the model?

For q = 1, we have:

•
$$r_c=1/2$$
 on \mathbb{T} ,

• $r_c + r_c^* = 1$ on \mathbb{Z}^2 .

Thank you for your attention!

- What else can be proved on the square lattice? (We expect $r_c(\beta) + r_c^*(\beta) = 1$, where $r_c^*(\beta)$ is the critical value for the matching lattice of \mathbb{Z}^2 .)
- What happens if $\Phi_{p,2}$ is replaced by $\Phi_{p,q}$ in the definition of the model?

```
For q = 1, we have:
```

•
$$r_c = 1/2$$
 on \mathbb{T} ,

•
$$r_c+r_c^*=1$$
 on \mathbb{Z}^2 .

Thank you for your attention!

- What else can be proved on the square lattice? (We expect $r_c(\beta) + r_c^*(\beta) = 1$, where $r_c^*(\beta)$ is the critical value for the matching lattice of \mathbb{Z}^2 .)
- What happens if $\Phi_{p,2}$ is replaced by $\Phi_{p,q}$ in the definition of the model?

For q = 1, we have:

•
$$r_c=1/2$$
 on \mathbb{T} ,

• $r_c + r_c^* = 1$ on \mathbb{Z}^2 .

Thank you for your attention!

- What else can be proved on the square lattice? (We expect $r_c(\beta) + r_c^*(\beta) = 1$, where $r_c^*(\beta)$ is the critical value for the matching lattice of \mathbb{Z}^2 .)
- What happens if $\Phi_{p,2}$ is replaced by $\Phi_{p,q}$ in the definition of the model?

For q = 1, we have:

•
$$\mathit{r_c}=1/2$$
 on \mathbb{T} ,

• $r_c + r_c^* = 1$ on \mathbb{Z}^2 .

Thank you for your attention!