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Stochastic Geometry

— Graphical Representation

Path-Integral Approach to Spin Systems

Main Examples:

e FK (Fortuin-Kesteleyn) Representation

e RC (Random Current) Representation



Plan of the Course

Lectures 1-2
e Quantum reformulation of Classical Ising model.
e (General setup for path-integral representa-
tion in terms of Poisson processes of arrival
(of matrices)

e Examples: FK and RC representations for
Ising model in transverse field

e An Application: Exponential decay of trun-
cated correlations at non-zero m.f.

Lecture 3 FK and RC representations

Lecture 4 Erdds-Rény random graphs.

L ecture 5 Curie-Weiss model in transverse field
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Notation
(A\,E) — Finite graph

Classical spin configuration on A,

o e {1} =Qp

J = {Jz-j > O} are coupling constants.
definition Jij >0« {i,5} €€.

h € R is a magnetic field.
Classical Hamiltonian

—H/I\(O‘) — Z JZ]O'ZO']—I—hZO‘Z
(i.5)e€ reN



Given 8 > 0 (inverse temperature) define the
classical Ising-Gibbs probability distribution on
97
h 1 gy
(o) = —5e A,

B,h
ZA

e Partition Function

1
= T e IR
O'EQ/\

e Mean value

A 1 _al
/vb/ﬂ\’ (Uz) — B.h Z o€ HHA(O—)a
Z/\, O’EQ/\

e Two point function

1 Z O'iO'je_ﬂH{\(U)

[[li 7h —



Quantum Reformulation of the Classical Model

e +1 are understood as eigenvalues of Pauli
matrix
~ 1 O
y4 p—

e [ he corresponding eigenfunctions are

0=() o r=(2)

In this notation W?|o) = ol|o) for o = +1.

e Lifting of Classical configurations o € Q2a

Qrd0 — o) = Q) o) € Xp = ®R2
1EN 1EN

e Action of W? on |o)
Wilo) = |o1) @ - @ W o) ® - = a|o)
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e For i,j € A\ the operators W? and VA\/§ (on
XA) commute,

W WZ|O'> — 0i0j|0>

e Quantum Hamiltonian Hp is a linear self-
adjoint operator on Xj,

(i.5)e€ e

e The action of Hy on |o) is

—Halo) = ) Jijoioilo) +h ) o4lo)

(i,§)€E e
= Z Jijoioj+h Z a; | o)
(i,5)€E 1eN
= —Hp\(o)|o)

where H4 A(o) is the classical Hamiltonian.



Classical case: Operators WZ WZ commute.
Moreover, the operator

(2,5)€€ 1EN
is diagonal in the basis {[o)},cq, Of XA. In
particular,

e BN o) = e BHA) |5} Vo e Qp

Define the scalar product (e|e) on Xx
(cloy = 1] ]I{UZ__U el | Fp——
1eEN
Then {|‘7>}0€Q/\ is an orthonormal basis of X\.
Also,
(o]e™ 5HA|J> _ o~ AHp(0)



Furthermore,
(o|WEe™BRA| o) = e PHAL)

As well as,

Representation for the classical model

e Partition Function

200 = 3 (olePRng) = Tr (e—ﬁF'A)
ocQp

e Mean value

e Two point function

h
M/ﬁ\’ (0;05) =



General Case

e The space is as before Xy = ®,cAR? with the
scalar product (e|e).

e K1,..., Ky, are self-adjoint operators (matri-
ces) on Xjx, in general non-commuting.

® \{,...,\p are positive numbers.

e Hamiltonian: —Hp = ST A\ K.

Task: Find a graphical representation for

e Partition Function
Z/B\ = Tr (e_ﬁﬂ/\) — Tr (eﬁ > 1 AeKe)

e Mean value Given a (self-adjoint) matrix A,

Z0[A] = Tr (Ae—ﬁF'A)

10



Two Main Tools

Lie-Trotter Formula

Let Aq,...,An be self-adjoint matrices on X\.
Then,
" N
editFAn — |im (HeAe/N>
N—00 1

Matrix Product Expansion Formula

Let Bi,...,By be self-adjoint matrices. Let
B be an orthonormal basis of Xa, e.g. B =
{lo)}Ypeq, - Then for any two |v), V') € B,

(v|By ...By|V)

=Y WBivh B . (VBN
vy LN eB

11



Path Integral Representation

STEP1 Use of Lie-Trotter Formula.

- B/ A
B2 MK — im (H eAAeKe)
A—0 1

- B/
= P2 |im (H {(1 = AX)I+ AAeKe})
A—0 I—1

STEP2 Interpretation in Terms of Bernoulli Tri-
als. Set N = g3/A.

For £ = 1,...,m let fg = (fg(l),fg(N)) be
independent sequences of i.i.d. trials with

pr = AN A
et IP%A be the corresponding product proba-
bility measure on

{0,1}V x ... x {0,1} ==y

m times

12



Then, by the Product Expansion Formula

. N
(H {(1 = AX)I+ A>\£K£}>

=1
= Y Pia(E=a) Ka
aE=N
where matrices K, are defined via

N m
Ko = ][] {H ((1 ae(j))l-l-al(j)Kﬁ)}-

13



Sample Path Interpretation of kg4

e Consider only a-s with > yay(j) = 0,1 for
j=1,...,N.

e Arrival Times (belong to [0, 3])

T {jA Y ap(4) = 1}
14

={jAa: 3:a() =1}

e Arrival Types For t € a?,

[(t) =¢ if ap(t/A)=1
Then,

Ka = HtEaA K[(t)

14



Ka = H Ky

tEaA

Example: a® = {t1,to,t3,ta,t5}

Ky Ky Ky Kgy o K

STEP3 Use of Product Expansion Formula.

Representation of (v|Kq|v')

WiKal'y = 3> (WKl . K gl

P23 172

= > 1T (w@EDIK v (@)

lv(-))~a®  teaP

15



Path of [v()) ~a® = {t1,...,t5}

o [v(0)) =v) and |[v(B)) = [V)

e |v(:) can jump only at arrival times t € a®
XA
vi=r 3 | i
""""" AR ‘ ? |
; L | |
v=v* | | Y |
e e 7 '
: ‘ ! !
o
v —
0 'k %) ! ts 'ty ts B

16



Poisson limit as A | O

&y £ =1,...,m are independent Poisson Pro-
cesses of Arrivals (of operators K,) on [0, (]
with intensities Ay

A piece-wise constant trajectory

() ~ € =&
1

e If it has jumps only at the arrival times ¢ of

£

e And if for every t € £

(V=) |Kplv(t)) # 0
where [(t) € {1,...,m} is the arrival type at t.

17



Representation of Partition Function

Z—/ﬁ\ _ Tr (eﬁzﬁ\eKe)

eBZAe eﬁZAg

= [P} (@)Y ) (8) T] () Kiylv(®)
v (-))~¢ teg

Representation of Mean Values

N K
ZRlA) _ Tr(ae? )
eBZAé e,BZAe

— /793 (dE)x Y (W(O)|AW(B)) [T (v(t=) Ky lv(1)
v ())~E teg
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Classical FK Representation

Classical FK representation corresponds to the
path-integral interpretation of the Hamiltonian

(z,7)€E 1EN

= — () Ji;+> h|l
(4,4) ’
I+ W2W2 A2
+ T 2
(4,5)

Poisson Processes of Arrivals

e For (i,5) € £, Operators (matrices)

I+ WAW?

K L with intensity 2.J,;

Z]E

e For : € \, Operators

I+ W?
_ 1T W, with intensity 2h

.
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Actions of K;; and K; in the z-basis

Q/\ > O’—>|J>

e Recall: (I -+ VA\/va\/§) o) = (14 040;)|0).

= <O-|K’L]|O-/> — ]Io'zo'/]IO'iZO'j

e Recall: (I—I—\/AVZZ) o) = (1 4 0;)]|0).

= (0]Kilo") = Tyegrlp=11

T herefore
[T{ot)IE o)

teg

— H ]Ia(t—)za(t) X H ]IUz‘:Uj X H ]Ioiz—l—l

teg tEfij teg;

20



Conclusions

e Only constant trajectories o—|o(-)) are com-
patible |o(-)) ~ &

e Arrival of K;; forces o, =0

e Arrival of K, forces o; = +1

Example: 2 compatible trajectories |o(-)):

e 01()=0a() =41 e o3() = +1
e 04() = 05() = o6()) = +1

21



e There is a bond between (4,¢t) and (j,t) at
arrival times t of ¢&; ;.

e There is a bond between (i,t) and g
arrival times t of &;

e Any realization of & splits

ANUg=CoUCLU---UCyy

into disjoint union of maximal connected com-
ponents.
o #,(&) = M. Number of |o(-)) ~ & is 2#Fw(&)

Representation of partition Function
_5|2|
Z/B\ _ Tr (e /\)
Byt GBSy Jytih)

— 7D§J>2h (Q#w(f))

22



Define the (Random Cluster) Measure

7)5‘] 2h (2#10(5); df)
péj 2h (Q#w(f))

2J 2h (df)

Representation of Mean Value
Since (c|W?|o) = o

Ir (szeiﬁﬂ/\) _ 527,2h
Tr (e_ﬁH/\) b

u(oy) = (i < g)

Representation of Two Point Function
Since <J|\/AVZZ\/AVZ-|J> = 0,0}

Ir (WZWZ BHA) _ =2J2h
Tr( 5"'/\)

i (oi04) =

23



Classical RC Representation

Classical RC representation corresponds to the
path-integral interpretation of the Hamiltonian

(1,7)€€ 1EN
in the x-basis of XA.

x-basis of R?

o [ 1/V2 iy [ 1/V2

Action of WZ in x-basis of R?

W2 = ( o ) or W2|+1) = |=1)

Action of WZ in x-basis of ®@;caAR?

\/AVZZ|V> =) Q|- R = |§(i)>

24



Poisson Processes of Arrivals

e For (i,5) € £, Operators (matrices)

K;j = WiW?%  with intensity J;;
Action of K;:|v) = [#(4)): Simultaneous flip of

1-th and j5-th component of v.

e For s € \, Operators
K; = W? with intensity h

Action of K;|v) = |D(i)>: Flip of i-th compo-
nent of v.

T herefore
[ (v @K @yl (@)

teg

= 1l T,y—seng_y * LI T—pwqm

tE&L’j tes;

25



Representation of Partition Function

Z/ﬁ\ Tr (e_ﬁﬂ/\)

e6<2ij Jij_l_z:i h) o e/8<2ij Jij+2i h)

= [P} @exY (OB [T ()| Kiy I (8)
v (-))~€ tee

= Pﬁ‘]’h (9¢ = ) 2N

The event {0¢ = (0} means that there are Even
number of flips of each coordinate 1 € AU g.

Representation of Mean Value
~17-—BA J,h .
Tr(Wze=fHA) P (05 = {i,g})

p (o) = ~—— = -
Tr (e=AHn) Py (0 = 0)

Representation of Two Point Function

Py (0e = {ig})
Tr (e=0Fn) Py (9 = 0)

Tr (W2W2e=HA
h
ui(oi0) = ( — )

26



Switching Lemma

Let & and n be two independent random cur-
rents. Then,

&Py " (96 = {i,j} i m = A)

Consequence: Representation of truncated two-
point functions

QP2 (8 = 0: on = {i, j ol
I (e =00 = {i,4} i #— g

&Py " (9 = 0; on = 1)

Application: A C Z¢, J has finite range R and
h #= 0. Then for any g3,

W (o1:.0;) < execali=il/R

27



d

7 an

Let C be the connected cluster of

Proof
i (in k

E+m).

One should pay a fixed price per site k € C for

disconnecting k from g

28



Ising Model in Transverse Field

Quantum Ising Hamiltonian in the transverse
field is given by

—Ap = Y J;WEWS + th“vg + /\Zv“vﬁ,
1 2

(4,5)
where A > 0, and (in the z-basis),
— 1 0 ~w (01
W <0_1> and W_<1O

Matrices W% and WX do not commute.

Ha is not diagonal

29



FK Representation

e Decomposition of —Hp

S DIEIEDNED Y

(i.5) i
I+ W2W3 NZ
+ > 2J; LA 7+22hI+W@
i) ’ P2
+ > AWS+D).

e Basis of Xx: z-basis {|o)},cq,



Poisson Processes of Arrivals

e Links between (i,5) € £, Operators (matri-
ces)

I+Wiwz .
K;; = . with intensity 2J;;
5 J

Action: Arrival of K;,; forces o; = o

e Links between ¢+ € A and g, Operators

I+ W2
Kh T Wi with intensity 2h

1

Action: Arrival of K forces o; = 41

e Holes in [0,3];, i € A\,
K = (W} +1) with intensity 2)

Action: Arrival of K2 enables a flip of o;

31



e [1,I>,... maximal connected components

e Compatible trajectories |o(t)) ~ £ are con-
stant on I1,1o,... .

o If ;. is linked to g, then ¢ =1 on I

e For each compatible |o(t)) ~ &

()| Kiplo(®) = 1

e Number of compatible trajectories is 2#w(&)

32



Representation of partition Function
Z/ﬁ\ Tr (e—ﬁ':'/\)
By ditin+35A) BTy dutih+2iA)

p2/2hA (2#u(©)

Define the (Random Cluster) Measure
ng 2h,A (2#w(£); df)
2.J,2h,\
Py (Q#w(ﬁ))

~2J 2h,\

(d¢§) =

Representation of Mean Value

Ir (er_ﬂﬂ/\) ~D T 2B .
Tr (ez—m:'/\> - Pﬂ ((2,0) = g)

Representation of Two Point Function

= P52 ((1,0) = (,0)

33



RC Representation

e Decomposition of —Hn

(=)

+ > JiyWiWE + > hWE + > 2
(4,4) : t
e Basis of Xa: x-basis {|v)}

—~

W* <41

{

ve{+1 "\

In the x basis

. (01 WX+I (10
W—<1o> > ~ (00

34



Poisson Processes of Arrivals

e Flips: For (i,j) € £, Operators (matrices)

Action of K;j|v) = |p(¥)): Simultaneous flip of
1-th and j-th component of v.

o Flips: For : € A\, Operators
KP'=W? with intensity h

Action of K;|v) = |D(73)>: Flip of +-th compo-
nent of v.

e Marks: For ¢+ € A, Operators

oa_ Wi

1

with intensity 2\

Action: Arrival of K2 at time ¢ forces
V,L'(t) — —I—].

35



e [1,[>,... are marked intervals.

e Compatible trajectories |v(t)) ~ & have even
number of flips on each marked interval and
even number of flips on each [0, 3];.

Example: Realization of & which has no com-
patible trajectories at all

36



Example: Realization of & which has 23 com-
patible trajectories

Notation:
o #m(&): number of ¢ € A, such that [0, 3];

contains no marks.
e OJf : union of g and all intervals, marked or

[0, B];, whichever receives odd number of flips.

37



Representation of Partition Function
Z/ﬂ\ B Tr (e_ﬁﬂ/\>
CIOIRIE D DLIES D PRI ONIEDTIE DY
= [Py ()X O (B) [Tt Kigylv (1)
v (-))~€ teg
I h2) . -
= Pyt (0g = 0; 2% )

Representation of Mean Value Define I, marked
interval containing (7,0).
Tr (Wie=0Hn) P2t (9e = I; U g; 2#m(O)

Tr (e—BH/\) - pﬂjﬁ’” (ag = 0 Q#m(ﬁ))

Representation of Two Point Function
J,h,2)\ . _ .
P (ag = I;Ul; 2% <€>)

Tr (e—ﬂﬂ/\) - pg’h’”‘ (35 — ¢ 2#m(£)>
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Quantum Curie-Weiss Model

A 1 _ N
-AYY = SN 2o WIW +2 5 Wi
1] 1=1

Critical Curve in the (8, ) Plane

f(B,A) = %tanh(w\) — 1.

Short Range Order

.

mange Order

1

39



Classical Curie-Weiss Model

2
1 N([1Z
i 1
1

Probability Distribution
1
i3 (o) = "N OPy (o)

where Py - £1 Bernoulli.

Large Deviation Approach: The distribu-
tion of m%,(o) is sharply concentrated around

argmax {%ﬁmQ — I(m)} = argmax {%/\(ﬁh) — %hz}

where

h —h
A(R) = log +2e I(m) = sup {hm — A(h)}.

40



Critical Points
d
h = —A(Bh) = tanh(B8h).
AL (8h)
Conclusion: 8. =1. 8> 1 & the spontaneous

magnetization m*(8) > 0.

Stochastic Geometric Approach

Arrival of links between  and j: Poisson on

[0, 3] with intensity 2/N

e py =1 —ezﬂ/NNQﬁ/N.

e P}, Erd6s-Rény random graph with p = /N

o P}, ~ 27 (P the FK random graph
M?\r(gz‘%‘) =P (i — §)

~ P29 (GiantComponent)

41



Critical Value for Erdds-Rény Random
Graphs

P); (GiantComponent) — 0 < v < 1.

Edwards-Sokal Construction

e Sample edges from P},

e Paint all connected clusters into red and blue
with proability 1/2 each

e Conditional on M sites and N — M Dblue sites
the distribution of P}, is P}, @ P}_,,

Conclusion 1 (Immediate): If 3 > 1, then

P27 (GiantComponent) — 1

Indeed: Either M > N/2 or N— M > N/2
Conclusion 2 (Slightly more involved): If g <
1, then

ﬁ’i,ﬂ (GiantComponent) — 0

42



Quantum Random Graphs IP’%/\

e Links: For each couple (i,7) arrive with in-
tensity 1/N

e Holes: For each ¢+ = 1,..., N arrive with in-
tensity A.

Size of a connected component I = UI;:

Cl = >_ I

[

43



Critical Curve in the (8, ) Plane

Theorem (I, Levit):

Long Range Order

1. If h(B,N) < 1,

log N)

PR (G0 — () = 0 (P

uniformly in t,s € [0,0] and ¢ # j.

2. If h(B,\) > 1 and B < oo then there ex-
ists p = p(B,\) € (0,1), such that

PN ((i,8) —— (4, 5)) = p(B, )2 (1 + o(1)),
uniformly in ¢t,s € [0,3] and i #£ j.
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e M - size of the maximal connected compo-
nent

o M"eXt _ sjze of the next to maximal con-
nected component.

Giant Componnets

1. If h(B,\) < 1,
P2 (M > clog N) = o(1)

2. If h(B,A) > 1 and B < oo
P?\;A <|ﬂ —
BN
3. If 3 = o0 and A < 2, then there is unique
giant component intersecting t = 0 section.

< e, Mt < ¢log N) — 1
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Comparison with Branching Random
Walks on Sg

1. Generate a random interval I C Sﬁ around
O The end-points of I would imitate two
successive holes. Since the holes arrive
with intensity A the length |I]| should be
distributed as min{Ir(2,\), 8}.

2. Given a realization of I generate descen-
dants according to the unit rate Poisson
process on 1.

46



Mean Value of Descendants X
e E(X|I) = |1
e Let V ~T(2,)\) Then,
E(I]) =E(V,V<B)+pP(V >p),
e Now,
P(V>B) = /;O N2teMdt = (A8 + 1)e .
e In the same fashion,
. _ 2 _\3 2 Y
E(V;V<pB) = X(1—e )= (B2A+28) e
e Consequently,

E(CX) =E(Il) = 5 (1-e) — pe,

a7



Critical Curve for Quantum FK Model
via Percolation Arguments

It

48



LD Approach

e Partial Trotterization: Set M = G/A.

M
I{Q@ = AN+ ANW 4D}

(7,5)
. B\N/2\N/2
e [ he matrices eN "t "J are diagonal in the z-
basis,
D N\A/Z\NZ
(0|€2NW’L'WJ|J> — e2N7i%)
o £ = (&1,...,&y) Poisson processes of arrival

of holes on Sﬁ. A classical trajectory o : Sﬁ —
{il}N is compatible o(-) ~ £ if i-th compo-
nents o;(-) jump only at arrival times of §;.

e Number of compatible trajectories 22 #(&)

49



Poisson Limit:
Tr (e_ﬁﬂjc\fw>

AN

81
/P%A(dﬁ) > exp /O < > oi(t)o;(t)dt
o~g (4,5)

e Define

2#(O) Pl (g _
2 N#é)g):@w’/\
Py (2#®)

e Define 9% the measure on piecewise con-
stant classical trajectories o : Sg — {£1}:
STEP 1 Sample holes ¢ from PBA

STEP 2 Paint each connected component of &
into £1 with probability 1/2 each

PR (d€) =

N
Q]ﬁv’A = QBA
1

50



Representation Formula
Tr (e_ﬁﬂzcvw) ~ Qﬁ;}‘ (e% OBmJQV(t)dt)
where
Ly
my(t) =— > on(t)
N =
Variational Problem (VP) (on Lx(Sg))
1B o A
sup {5/0 m<(t)dt — I(m)} = S%p@(m),
where
I — h, —A(h
(m) = sup {(h,m)s — A()}

and

A(h) = log QP (e<h>0>ﬁ).

51



Theorem (L. Chayes, Crawford, I, Levit)
Set f(8,\) = 3 tanh(BX)

The variational problem (VP) has constant max-
imizers +=m*(\, )1, where the spontaneous z-
magnetization m™* satisfies:

o If f(N\,3) <1, then m* = 0.

o If f(A\,3) > 1, then m™ > 0, and, consequently
there are two distinct solutions to (VP)

Furthermore, away from the critical curve the
solutions =m™1 are stable in the following sense:
There exists ¢ = ¢(A,8) > 0 and a strictly con-
vex symmetric function U with a U(r) ~ rlogr
growth at infinity, such that

S(Em™1) — &(m)

> cmax £ m* 1|3, [ UGn 0ot}
where,
Imtm*1)|3 = min{[m - m*1||3, |[m+m*1||3}.
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As a result, the variational problem (VP) is also
stable in the supremum norm || - |[sup. Namely,
there exists a constant csup = csup(A, B) > 0,
such that

&(Em*1) — &(m) > exp{— csup }

| £ m* 1||sup

Finally we have the following expression for the
decay of m* > 0 in the super-critical region
near the critical curve:

m* — m*(A,ﬁ) — \/6ﬁ (f(Aaﬁ) o 1)

s4(\, B)
where the implicit constants depend on 5 and
A but are bounded below in compact regions
of the parameter space.

(14 0(1))

53



Strong Coupling Limit Structure of 9

e Consider 1D Periodic lattice

La={0,A2A,....,0—-A}
e Consider Ising Model Q%/\ on {il}»£A with

the coupling constant e 2/ = \A.

QN = o

54



Properties of QFA
o OB possesses the FKG property

o O satisfies a qualitative version of the the
GHS inequality: Given h € Ry define

Qﬁ,)\ (eh(a,]I)B ; dO’)

QQ’A (do) = OB (eh(a,]%)

Then,
d

d—hVarg’A ((0, ]I)ﬁ) < —che 2P,

o 0P is reflection positive:
Let 0 <ty <---<tp<B/2andlet f:{+1}" —
R. Set s, = (3 —t. Then,

Qﬁ)\ (f(O'tla---ao'tn)f(0'817"'703n)) > 0.
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Implications of Reflection Positivity

Moment generating function

A(R) = log 9PA (e“w)ﬂ).

satisfies

1 8
A(R) < 5/0 A (h($)T) dt

Consequently, for h € Lo(Sp),
A(R) — 1/5 h2(1)dt
</ { “A (h(t )]I)—%hz(t)}

heR

1 1 5
< Bsup {E/\ (hT) — Zh }
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One Dimensional Variational Problem
and Critical Curve

Recall: f(8,\) = 3 tanh(B)).

e Maximizers of
1 1
max<{ =A (h1) — Zh?},
heR | 3 2

are of the form 4+h™, where h* > 0 if and only
if f(\,8) > 1.

e Compute,
d |1 1 1 32
an {EAUL]I) — Ehz} — EQ}L ((o', ]I)ﬁ) — h.

Negative for h large enough = maximum is
attained.
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First use of the GKS Inequality

;—hQQ’A ((a, ]I)ﬂ) = Varg’A ((0, ]I)ﬂ) :

Hence h — QQ’A ((0, ]I)ﬂ) is concave on R;.

e Consequently non-trivial maximaizers iff

1< vard? (0. 1) = (5.0
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Second use of the GKS Inequality

e Stability of the 1D Variation Problem: For
f(B,X) > 1 there exists d : [-1,1] — R4 such
that

S(mI) + d(m) < &(E£m 1)

and
d(m) > ce 2017 min {(m —m*?, (m+ m*)z}

o L>(Sg)-Stability of the (VP):
Bl1 4 1
&(m(-)) é/o {Em () — Ef(m(t)ll)}dt

1 /8
:B/o &(m(t)M)dt
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Use of the FKG Ineqiality
Fact: Exists n > 0 such that 755’>‘ < PO

e Stability of (VP) in the sup-norm
=~
m = — O;
N N : 1
Let R ={0<t1 <tpr < ---<tpn=1tg< P} be a

partition of Sﬂ. Consider

2R = (mu(t1) — muy(to), -y ma(tn) — my(tn_1))

Random vectors 2% satisfy a LD principle with
rate function

IR = maxXx {Zgzzz — /\R(QL o 79n)}
i

9g1,---9n

where
/\R — QQ,A (ezz gi(a(ti)_a(ti—l))>
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In view of Edwards-Sokal Representation
02_i9i(o(ti)—o(ti-1))

< TI(L+ Mg,y )0y (€37 +729))

The RHS is monotone in £&. Hence by FKG,
QQ’)\ (ezi gi(o'(ti)_a(ti—l)))

<TI (1 i (1 _ e—77|tz'—tz'—1|) (e29i 4 e_QQi)) .
)
Consequently,
/\R(Q]J R 79?7,) < 772 |t’b — t2—1|H(g’L)7
)

where H(g) = (e29 + e—29).
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By duality,

>
IR(Z]J"')ZTL) ZZ|tz_tz—l|Un< - >7
1

it — ti—1]

with,
Ui

and H* is the Legendre transform of H.

e Conclusion: For every partition R,

m(t;) — m(%-l))

it — ti—1]

I(m) > Z t; —t;—1|Up (

e Uy is smooth, strictly convex, Uy(m) ~ |m|log |m|
at infinity (but Uy(0) = —2n)

00, if m is not a.c.

I(m)= {foﬁ Up(m/(t))dt, otherwise
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