Random walk on random fractals: the Alexander-Orbach conjecture

Gady Kozma (speaker) and Asaf Nachmias

IMU 2008

The graphical Sierpinski gasket

The Sierpinski

Gasket

Dimensions
Generalized
Sierpinski carpets
Percolation
Euclidean grids
The IIC
The conjecture
The proof
critical exponents

Settings

- Let G be any infinite connected graph. Let $R(n)$ be a random walk on G i.e. $R(n+1)$ is chosen with equal probability among all the neighbors of $R(n)$ in G.

The Sierpinski

 Gasket
Dimensions

Generalized
Sierpinski carpets
Percolation
Euclidean grids
The IIC
The conjecture
The proof
critical exponents

Settings

- Let G be any infinite connected graph. Let $R(n)$ be a random walk on G i.e. $R(n+1)$ is chosen with equal probability among all the neighbors of $R(n)$ in G.
- For any two vertices x and y let $d(x, y)$ be the graph distance between them, namely the length of the shortest path between x and y in G.
Examine the dispacement $D_{n}=\mathbb{E} d(R(0), R(n))$

Settings

- Let G be any infinite connected graph. Let $R(n)$ be a random walk on G i.e. $R(n+1)$ is chosen with equal probability among all the neighbors of $R(n)$ in G.
- For any two vertices x and y let $d(x, y)$ be the graph distance between them, namely the length of the shortest path between x and y in G.
Examine the dispacement $D_{n}=\mathbb{E} d(R(0), R(n))$
- If $G=\mathbb{Z}^{d}$ then $D_{n} \approx \sqrt{n}$. This behavior is called diffusive.

The Sierpinski

Gasket

Dimensions
Generalized
Sierpinski carpets

Euclidean grids
The IIC
The conjecture
The proof
critical exponents

Settings

- Let G be any infinite connected graph. Let $R(n)$ be a random walk on G i.e. $R(n+1)$ is chosen with equal probability among all the neighbors of $R(n)$ in G.
- For any two vertices x and y let $d(x, y)$ be the graph distance between them, namely the length of the shortest path between x and y in G.
Examine the dispacement $D_{n}=\mathbb{E} d(R(0), R(n))$
- If $G=\mathbb{Z}^{d}$ then $D_{n} \approx \sqrt{n}$. This behavior is called diffusive.
- If G is a binary tree, then $D_{n} \approx n$. This behavior is called ballistic. In our setting ("reversible"), this is possible only if the volume of balls grows exponentially.

Settings

- Let G be any infinite connected graph. Let $R(n)$ be a random walk on G i.e. $R(n+1)$ is chosen with equal probability among all the neighbors of $R(n)$ in G.
- For any two vertices x and y let $d(x, y)$ be the graph distance between them, namely the length of the shortest path between x and y in G.
Examine the dispacement $D_{n}=\mathbb{E} d(R(0), R(n))$
- If $G=\mathbb{Z}^{d}$ then $D_{n} \approx \sqrt{n}$. This behavior is called diffusive.
- If G is a binary tree, then $D_{n} \approx n$. This behavior is called ballistic. In our setting ("reversible"), this is possible only if the volume of balls grows exponentially.
- When $D_{n} \approx n^{1 / \beta}$ for some $\beta>2$, the process is called subdiffusive. Another name is anomalous diffusion.

The Sierpinski
 Gasket

Dimensions
Generalized
Sierpinski carpets

Euclidean grids
The IIC
The conjecture

Random walk on the Sierpinski gasket

- Denote by T_{n} the expected time a random walk on the Sierpinski gasket exits a triangle of order n. Our goal is to calculate T_{n} inductively.

The Sierpinski Gasket

Random walk on the Sierpinski gasket

- Denote by T_{n} the expected time a random walk on the Sierpinski gasket exits a triangle of order n. Our goal is to calculate T_{n} inductively.
- Denote by $A=T_{n+1}, B$ and C the expected exit times from the three ramification points.

The Sierpinski Gasket

Random walk on the Sierpinski gasket

- Denote by T_{n} the expected time a random walk on the Sierpinski gasket exits a triangle of order n. Our goal is to calculate T_{n} inductively.
- Denote by $A=T_{n+1}, B$ and C the expected exit times from the three ramification points.

- Using the symmetries one gets

$$
\begin{aligned}
& A=T_{n}+B \\
& B=T_{n}+\frac{1}{4} B+\frac{1}{4} A+\frac{1}{4} C \\
& C=T_{n}+\frac{1}{2} B
\end{aligned}
$$

The Sierpinski Gasket

Random walk on the Sierpinski gasket

- Denote by $A=T_{n+1}, B$ and C the expected exit times from the three ramification points.

The Sierpinski

Gasket
Dimensions
Generalized
Sierpinski carpets
Percolation
Euclidean grids
The IIC
The conjecture
The proof
critical exponents

- Using the symmetries one gets

$$
\begin{aligned}
& A=T_{n}+B \\
& B=T_{n}+\frac{1}{4} B+\frac{1}{4} A+\frac{1}{4} C \\
& C=T_{n}+\frac{1}{2} B
\end{aligned}
$$

- Solving one gets $T_{n+1}=A=5 T_{n}, B=4 T_{n}$ and $C=3 T_{n}$. Hence $T_{n}=5^{n}$.

Sierpinski gasket II

The Sierpinski

Gasket

Dimensions

Generalized
Sierpinski carpets

$$
D_{5 n} \approx 2^{n}
$$

So

$$
\beta=\frac{\log 5}{\log 2} .
$$

Sierpinski gasket II

The Sierpinski

Gasket
Dimensions
Generalized
Sierpinski carpets

$$
D_{5 n} \approx 2^{n}
$$

So

$$
\beta=\frac{\log 5}{\log 2} .
$$

- Any finitely ramified fractal can be handled that way.

Definitions

- In any infinite graph G one can define a ball $B(x, r)$ with respect to the graph metric. Denote by $|B(x, r)|$ its volume, or simply number of vertices in it. If for some d_{f},

$$
|B(x, r)|=r^{d_{f}+o(1)}
$$

(if it holds for one x then it holds for all x) then we say that G has volume growth dimension $d_{f} . d_{f}$ is the graphical analog of the Hausdorff dimension.

The Sierpinski

Gasket

Dimensions

Generalized
Sierpinski carpets

Euclidean grids
The IIC
The conjecture

Definitions

- In any infinite graph G one can define a ball $B(x, r)$ with respect to the graph metric. Denote by $|B(x, r)|$ its volume, or simply number of vertices in it. If for some d_{f},

$$
|B(x, r)|=r^{d_{f}+o(1)}
$$

(if it holds for one x then it holds for all x) then we say that G has volume growth dimension d_{f}. d_{f} is the graphical analog of the Hausdorff dimension.

- Let $p_{t}(x, y)$ be the probability that random walk starting from x will be exactly at y at time t. If $G=\mathbb{Z}^{d}$ then $p_{t}(x, x) \approx t^{-d / 2}$. To define a dimension using this relation, we say that if for some d_{s}

$$
p_{t}(x, x)=t^{-d_{s} / 2+o(1)}
$$

(if it holds for one x then it holds for all x) then we call d_{s} the spectral dimension.

Examples

Alexander-
 Orbach

- For $\mathbb{Z}^{d}, d_{s}=d_{f}=d$.

The Sierpinski

Gasket

Dimensions

Generalized
Sierpinski carpets
Percolation
Euclidean grids
The IIC
The conjecture
The proof
critical exponents

Examples

- For $\mathbb{Z}^{d}, d_{s}=d_{f}=d$.
- For any transitive graph, $d_{s}=d_{f}$ and the common value is integer (Gromov 81, Trofimov 85, Delmotte 99).

Alexander-
Orbach

Graphical fractal

The Sierpinski

Gasket

Dimensions

Generalized
Sierpinski carpets
Percolation
Euclidean grids
The IIC
The conjecture
The proof
critical exponents

Examples

- For $\mathbb{Z}^{d}, d_{s}=d_{f}=d$.
- For any transitive graph, $d_{s}=d_{f}$ and the common value is integer (Gromov 81, Trofimov 85, Delmotte 99).
- Let $\alpha>0$ and examine the subset of \mathbb{Z}^{2} given by

$$
\left\{|y| \leq|x|^{\alpha}\right\} .
$$

The Sierpinski
Gasket

Dimensions

Generalized
Sierpinski carpets

Percolation

Euclidean grids
The IIC
The conjecture
The proof
critical exponents

Then $d_{f}=d_{s}=1+\alpha$.

Examples

- For $\mathbb{Z}^{d}, d_{s}=d_{f}=d$.
- For any transitive graph, $d_{s}=d_{f}$ and the common value is integer (Gromov 81, Trofimov 85, Delmotte 99).
- Let $\alpha>0$ and examine the subset of \mathbb{Z}^{2} given by

$$
\left\{|y| \leq|x|^{\alpha}\right\} .
$$

Then $d_{f}=d_{s}=1+\alpha$.

- For the Sierpinski gasket,

$$
d_{s}=2 \frac{\log 3}{\log 5} \quad d_{f}=\frac{\log 3}{\log 2}
$$

and in particular $d_{s}<d_{f}$. (seeing the value of d_{f} is easy - a ball of radius 2^{n} around the "root" is simply a level n triangle which has volume 3^{n}).

The Sierpinski
Gasket

Dimensions

Generalized

Regularity results

- For any n and d and any connected subset of $\{1, \ldots, n\}^{d}$ one can construct an infinite connected graph, the generalized Sierpinski carpet.

Graphical frac The Sierpinski
 Gasket
 Dimensions

Generalized
Sierpinski carpets
Percolation
Euclidean grids
The IIC
The conjecture
The proof
critical exponents

Generalized
Sierpinski carpets
Percolation
Euclidean grids
The IIC
The conjecture
The proof
critical exponents

Regularity results

- For any n and d and any connected subset of $\{1, \ldots, n\}^{d}$ one can construct an infinite connected graph, the generalized Sierpinski carpet.
- The usual Sierpinski carpet is created with $d=2, n=3$ and the subset being $\{1,2,3\}^{2} \backslash\{(2,2)\}$.

The Sierpinski

Gasket

Dimensions
Generalized
Sierpinski carpets

Euclidean grids
The IIC
The conjecture
The proof
critical exponents

Regularity results

- For any n and d and any connected subset of $\{1, \ldots, n\}^{d}$ one can construct an infinite connected graph, the generalized Sierpinski carpet.
- The usual Sierpinski carpet is created with $d=2, n=3$ and the subset being $\{1,2,3\}^{2} \backslash\{(2,2)\}$.

Theorem (Barlow \& Bass, 1999)
For any generalized Sierpinski carpet, d_{s}, d_{f} and β are well defined, and one has $d_{s}=2 d_{f} / \beta$.

Regularity results

- For any n and d and any connected subset of $\{1, \ldots, n\}^{d}$ one can construct an infinite connected graph, the generalized Sierpinski carpet.
- The usual Sierpinski carpet is created with $d=2, n=3$ and the subset being $\{1,2,3\}^{2} \backslash\{(2,2)\}$.

Theorem (Barlow \& Bass, 1999)
For any generalized Sierpinski carpet, d_{s}, d_{f} and β are well defined, and one has $d_{s}=2 d_{f} / \beta$.
Further, one has the following estimate

$$
p_{t}(x, y) \approx C t^{-d_{s} / 2} \exp \left(-c\left(\frac{|x-y|^{\beta}}{t}\right)^{1 /(\beta-1)}\right)
$$

Theorem (Barlow, 2004)
Any value of β between 2 and $d_{f}+1$ is possible. Similarly, any value of d_{s} between $2 d_{f} /\left(d_{f}+1\right)$ and d_{f} is possible.

Definition of p_{c}

- Let G be any infinite graph. Let $0 \leq p \leq 1$. Consider the random graph G_{p} that one gets by keeping every edge of G with probability p, independently for each edge.

The Sierpinski

Gasket
Dimensions
Generalized
Sierpinski carpets

Percolation

Definition of p_{c}

- Let G be any infinite graph. Let $0 \leq p \leq 1$. Consider the random graph G_{p} that one gets by keeping every edge of G with probability p, independently for each edge.
- Let $\psi(p)$ be the probability that G_{p} has an infinite component. $\psi(p)$ is obviously an increasing function of p.

The Sierpinski

Definition of p_{c}

- Let G be any infinite graph. Let $0 \leq p \leq 1$. Consider the random graph G_{p} that one gets by keeping every edge of G with probability p, independently for each edge.
- Let $\psi(p)$ be the probability that G_{p} has an infinite component. $\psi(p)$ is obviously an increasing function of p.
- Changing any finite set of edges cannot destroy or create an infinite cluster. Therefore $\psi(p)$ is either 0 or 1 .

The Sierpinski
 Gasket

Dimensions
Generalized
Sierpinski carpets
Percolation
Euclidean grids
The IIC
The conjecture

Definition of p_{c}

- Let G be any infinite graph. Let $0 \leq p \leq 1$. Consider the random graph G_{p} that one gets by keeping every edge of G with probability p, independently for each edge.
- Let $\psi(p)$ be the probability that G_{p} has an infinite component. $\psi(p)$ is obviously an increasing function of p.
- Changing any finite set of edges cannot destroy or create an infinite cluster. Therefore $\psi(p)$ is either 0 or 1 .
- Therefore there exists some p_{c}, depending on G, such that $\psi(p)=0$ for $p<p_{c}$ and $\psi(p)=1$ for $p>p_{c}$.

Percolation on $\mathbb{Z}^{2}, p=0.45$

Alexander-
Orbach

The Sierpinski

Gasket

Dimensions

Generalized Sierpinski carpets

Percolation

Euclidean grids
The IIC
The conjecture
The proof
critical exponents

Percolation on $\mathbb{Z}^{2}, p=0.45$

Alexander-
Orbach

The Sierpinski

Gasket

Dimensions

Generalized Sierpinski carpets

Percolation

Euclidean grids
The IIC
The conjecture
The proof
critical exponents

Percolation on $\mathbb{Z}^{2}, p=0.55$

The Sierpinski

Gasket

Dimensions

Generalized
Sierpinski carpets

Percolation

Euclidean grids
The IIC
The conjecture
The proof
critical exponents

Percolation on $\mathbb{Z}^{2}, p=0.55$

The Sierpinski

Gasket

Dimensions

Generalized
Sierpinski carpets

Percolation

Euclidean grids
The IIC
The conjecture
The proof
critical exponents

Simple examples

- for $G=\mathbb{Z}, p_{c}=1$ and $\psi\left(p_{c}\right)=1$ (exercise).

Graphical fractals

The Sierpinski
Gasket
Dimensions
Generalized
Sierpinski carpets

Percolation
 Euclidean grids The IIC
 The conjecture

The proof
critical exponents

Simple examples

- for $G=\mathbb{Z}, p_{c}=1$ and $\psi\left(p_{c}\right)=1$ (exercise).
- for G a d-regular tree, $p_{c}=\frac{1}{d-1}$ and $\psi\left(p_{c}\right)=0$. This is equivalent to a Galton-Watson branching process.

The Sierpinski

Gasket

Dimensions

Generalized

Percolation

Euclidean grids

The IIC
The conjecture

Simple examples

- for $G=\mathbb{Z}, p_{c}=1$ and $\psi\left(p_{c}\right)=1$ (exercise).
- for G a d-regular tree, $p_{c}=\frac{1}{d-1}$ and $\psi\left(p_{c}\right)=0$. This is equivalent to a Galton-Watson branching process.

The Sierpinski
 Gasket

Dimeneions
Generalized
Sierpinski carpets
Percolation
Euclidean grids
The IIC
The conjecture

- The complete graph on n vertices exhibits similar behvior (even though it is finite) with " $p_{c}=\frac{1}{n}$ " and " $\psi\left(p_{c}\right)=0$ ", Erdős \& Rényi (1959).
- In the subcritical case, component sizes decay exponentially in the volume, i.e. for every $p<p_{c}$ there exist some $\lambda>0$ such that

$$
\mathbb{P}(|\mathcal{C}|>n) \leq e^{-\lambda n}
$$

where \mathcal{C} is the cluster containing the origin. Menshikov (1986), Aizenman \& Barsky (1987).

- In the subcritical case, component sizes decay exponentially in the volume, i.e. for every $p<p_{c}$ there exist some $\lambda>0$ such that

$$
\mathbb{P}(|\mathcal{C}|>n) \leq e^{-\lambda n}
$$

where \mathcal{C} is the cluster containing the origin. Menshikov (1986), Aizenman \& Barsky (1987).

- In the supercritical case there exists one infinite cluster (Burton \& Keane, 1989). The sizes of the finite clusters decay exponentially in the surface area, i.e. for every $p>p_{c}$ there exists some λ such that

$$
\mathbb{P}(n<|\mathcal{C}|<\infty) \leq e^{-\lambda n^{(d-1) / d}}
$$

Grimmett \& Marstrand (1990), Kesten \& Zhang (1990).

The Sierpinski
Gasket
Dimensions
Generalized

Sierpinski carpets

Euclidean grids The IIC
The conjecture

- In the subcritical case, component sizes decay exponentially in the volume, i.e. for every $p<p_{c}$ there exist some $\lambda>0$ such that

$$
\mathbb{P}(|\mathcal{C}|>n) \leq e^{-\lambda n}
$$

where \mathcal{C} is the cluster containing the origin. Menshikov (1986), Aizenman \& Barsky (1987).

- In the supercritical case there exists one infinite cluster (Burton \& Keane, 1989). The sizes of the finite clusters decay exponentially in the surface area, i.e. for every $p>p_{c}$ there exists some λ such that

$$
\mathbb{P}(n<|\mathcal{C}|<\infty) \leq e^{-\lambda n^{(d-1) / d}}
$$

Grimmett \& Marstrand (1990), Kesten \& Zhang (1990).

- In most senses, the supercritical cluster "looks like a stretched-out grid". In neither case is it reasonable to claim that clusters are "fractal".

$p=p_{c}$

Some conjectures coming from the physics literature:

Percolation

Euclidean grids The IIC
The conjecture
The proof
critical exponents

$p=p_{c}$

Some conjectures coming from the physics literature:
(a). For $d>1$ there is no infinite cluster at the critical p.

Graphical fractals

The Sierpinski
Gasket
Dimensions
Generalized
Sierpinski carpets

Percolation

Euclidean grids The IIC
The conjecture
The proof
critical exponents

$p=p_{c}$

Some conjectures coming from the physics literature:
(a). For $d>1$ there is no infinite cluster at the critical p.
(b). The size of the critical cluster decays polynomially*, i.e.

$$
\mathbb{P}(|\mathcal{C}|>n) \approx n^{-1 / \delta}
$$

for some δ.

Euclidean grids

$p=p_{c}$

Some conjectures coming from the physics literature:
(a). For $d>1$ there is no infinite cluster at the critical p.
(b). The size of the critical cluster decays polynomially*, i.e.

$$
\mathbb{P}(|\mathcal{C}|>n) \approx n^{-1 / \delta}
$$

for some δ.
(c). Universality: δ depends only on the dimension, and not on the specific grid (unlike, say, p_{c}).

$p=p_{c}$

Some conjectures coming from the physics literature:
(a). For $d>1$ there is no infinite cluster at the critical p.
(b). The size of the critical cluster decays polynomially*, i.e.

$$
\mathbb{P}(|\mathcal{C}|>n) \approx n^{-1 / \delta}
$$

for some δ.
(c). Universality: δ depends only on the dimension, and not on the specific grid (unlike, say, p_{c}).
(d). $\frac{91}{5}=\delta_{2}>\delta_{3}>\cdots>\delta_{6}=\delta_{7}=\cdots=2$.

Euclidean grids

$p=p_{c}$

Some conjectures coming from the physics literature:
(a). For $d>1$ there is no infinite cluster at the critical p.
(b). The size of the critical cluster decays polynomially*, i.e.

$$
\mathbb{P}(|\mathcal{C}|>n) \approx n^{-1 / \delta}
$$

for some δ.
(c). Universality: δ depends only on the dimension, and not on the specific grid (unlike, say, p_{c}).
(d). $\frac{91}{5}=\delta_{2}>\delta_{3}>\cdots>\delta_{6}=\delta_{7}=\cdots=2 .^{*} \ln d=6$ there are logarithmic corrections.

Some conjectures coming from the physics literature:
(a). For $d>1$ there is no infinite cluster at the critical p.
(b). The size of the critical cluster decays polynomially*, i.e.

$$
\mathbb{P}(|\mathcal{C}|>n) \approx n^{-1 / \delta}
$$

for some δ.
(c). Universality: δ depends only on the dimension, and not on the specific grid (unlike, say, p_{c}).
(d). $\frac{91}{5}=\delta_{2}>\delta_{3}>\cdots>\delta_{6}=\delta_{7}=\cdots=2 .^{*} \ln d=6$ there are logarithmic corrections. The conjecture for the value $\frac{91}{5}$ is related to a conjecture that the distribution of large finite clusters is conformally invariant.

$p=p_{c}$

Some conjectures coming from the physics literature:
(a). For $d>1$ there is no infinite cluster at the critical p.
(b). The size of the critical cluster decays polynomially
(c). Universality: δ depends only on the dimension.
(d). $\frac{91}{5}=\delta_{2}>\delta_{3}>\cdots>\delta_{6}=\delta_{7}=\cdots=2$.

The Sierpinski

Gasket
Dimensions
Generalized
Sierpinski carpets

Euclidean grids

$p=p_{c}$

Some conjectures coming from the physics literature:
(a). For $d>1$ there is no infinite cluster at the critical p.
(b). The size of the critical cluster decays polynomially
(c). Universality: δ depends only on the dimension.
(d). $\frac{91}{5}=\delta_{2}>\delta_{3}>\cdots>\delta_{6}=\delta_{7}=\cdots=2$.

What has been proved?

$$
p=p_{c}
$$

Some conjectures coming from the physics literature:
(a). For $d>1$ there is no infinite cluster at the critical p.
(b). The size of the critical cluster decays polynomially
(c). Universality: δ depends only on the dimension.
(d). $\frac{91}{5}=\delta_{2}>\delta_{3}>\cdots>\delta_{6}=\delta_{7}=\cdots=2$.

What has been proved?

- $d=2$: a, Kesten (1980), "b, d" Smirnov (2001); Lawler, Schramm \& Werner (2001).

$$
p=p_{c}
$$

Some conjectures coming from the physics literature:
(a). For $d>1$ there is no infinite cluster at the critical p.
(b). The size of the critical cluster decays polynomially
(c). Universality: δ depends only on the dimension.
(d). $\frac{91}{5}=\delta_{2}>\delta_{3}>\cdots>\delta_{6}=\delta_{7}=\cdots=2$.

What has been proved?

- $d=2$: a, Kesten (1980), "b, d" Smirnov (2001); Lawler, Schramm \& Werner (2001).
- $d>6$: "a, b, c, d" Hara \& Slade (1990).

The Sierpinski
 Gasket

Dimensions
Generalized
Sierpinski carpets

Euclidean grids The IIC

$p=p_{c}$

Some conjectures coming from the physics literature:
(a). For $d>1$ there is no infinite cluster at the critical p.
(b). The size of the critical cluster decays polynomially
(c). Universality: δ depends only on the dimension.
(d). $\frac{91}{5}=\delta_{2}>\delta_{3}>\cdots>\delta_{6}=\delta_{7}=\cdots=2$.

What has been proved?

- $d=2$: a, Kesten (1980), "b, d" Smirnov (2001); Lawler, Schramm \& Werner (2001).
- $d>6$: "a, b, c, d" Hara \& Slade (1990).
- $d=3,4,5,6$: not even a.

Definitions

We want "critical percolation conditioned to have an infinite cluster".

Graphical fractals
The Sierpinski
Gasket
Dimensions
Generalized
Sierpinski carpets
Percolation
Euclidean grids
The IIC
The conjecture
The proof
critical exponents

Definitions

We want "critical percolation conditioned to have an infinite cluster". Suggestions:
(a). (Kesten, 1986). Take $p>p_{c}$. Condition on 0 being in the infinite cluster. Take $p \rightarrow p_{c}$.

Graphical fract
The Sierpinski
Gasket
Dimensions
Generalized
Sierpinski carpets
Percolation
Euclidean grids
The IIC
The conjecture
The proof
critical exponents

Definitions

We want "critical percolation conditioned to have an infinite cluster". Suggestions:
(a). (Kesten, 1986). Take $p>p_{c}$. Condition on 0 being in the infinite cluster. Take $p \rightarrow p_{c}$. The limit here is in the space $\mathcal{M}\left(\{0,1\}^{E\left(\mathbb{Z}^{d}\right)}\right)$ i.e. the space of measures on configurations.

The Sierpinski
Gasket
Dimensions
Generalized
Sierpinski carpets
Percolation
Euclidean grids
The IIC
The conjecture

Definitions

We want "critical percolation conditioned to have an infinite cluster". Suggestions:
(a). (Kesten, 1986). Take $p>p_{c}$. Condition on 0 being in the infinite cluster. Take $p \rightarrow p_{c}$. The limit here is in the space $\mathcal{M}\left(\{0,1\}^{E\left(\mathbb{Z}^{d}\right)}\right)$ i.e. the space of measures on configurations.
(b). (Kesten, 1986). Take critical percolation. Condition on $0 \leftrightarrow \partial B(0, r)$. Take $r \rightarrow \infty$.

Definitions

We want "critical percolation conditioned to have an infinite cluster". Suggestions:
(a). (Kesten, 1986). Take $p>p_{c}$. Condition on 0 being in the infinite cluster. Take $p \rightarrow p_{c}$. The limit here is in the space $\mathcal{M}\left(\{0,1\}^{E\left(\mathbb{Z}^{d}\right)}\right)$ i.e. the space of measures on configurations.
(b). (Kesten, 1986). Take critical percolation. Condition on $0 \leftrightarrow \partial B(0, r)$. Take $r \rightarrow \infty$.
(c). (van der Hostad \& Járai, 2004). Take critical percolation. Condition on $0 \leftrightarrow x$ for some $x \in \mathbb{Z}^{d}$. Take $x \rightarrow \infty$.

The Sierpinski
Gasket
Dimensions
Generalized
Sierpinski carpets

Euclidean grids

The IIC
The conjecture

Definitions

We want "critical percolation conditioned to have an infinite cluster". Suggestions:
(a). (Kesten, 1986). Take $p>p_{c}$. Condition on 0 being in the infinite cluster. Take $p \rightarrow p_{c}$. The limit here is in the space $\mathcal{M}\left(\{0,1\}^{E\left(\mathbb{Z}^{d}\right)}\right)$ i.e. the space of measures on configurations.
(b). (Kesten, 1986). Take critical percolation. Condition on $0 \leftrightarrow \partial B(0, r)$. Take $r \rightarrow \infty$.
(c). (van der Hostad \& Járai, 2004). Take critical percolation. Condition on $0 \leftrightarrow x$ for some $x \in \mathbb{Z}^{d}$. Take $x \rightarrow \infty$.
(d). Condition on the size of the cluster being $>n$. Take $n \rightarrow \infty$.

The Sierpinski
Gasket
Dimensions
Generalized
Sierpinski carpets

Euclidean grids

The IIC
The conjecture

Definitions

We want "critical percolation conditioned to have an infinite cluster". Suggestions:
(a). (Kesten, 1986). Take $p>p_{c}$. Condition on 0 being in the infinite cluster. Take $p \rightarrow p_{c}$. The limit here is in the space $\mathcal{M}\left(\{0,1\}^{E\left(\mathbb{Z}^{d}\right)}\right)$ i.e. the space of measures on configurations.
(b). (Kesten, 1986). Take critical percolation. Condition on $0 \leftrightarrow \partial B(0, r)$. Take $r \rightarrow \infty$.
(c). (van der Hostad \& Járai, 2004). Take critical percolation. Condition on $0 \leftrightarrow x$ for some $x \in \mathbb{Z}^{d}$. Take $x \rightarrow \infty$.
(d). Condition on the size of the cluster being $>n$. Take $n \rightarrow \infty$.

We will use (c). This object is called the incipient infinite cluster, or IIC for short.

- $d=2$

Kesten (1986) showed that random walk on the IIC of \mathbb{Z}^{2} is subdiffusive in the sense that $\mathbb{E}|R(t)| \leq t^{1 / 2-e p s}$.

- $d=2$

Kesten (1986) showed that random walk on the IIC of \mathbb{Z}^{2} is subdiffusive in the sense that $\mathbb{E}|R(t)| \leq t^{1 / 2-e p s}$. Note that this is not subdiffusive in the same sense as above because we measure distance by $|x|$ ("the extrinsic distance") rather than by $d(0, x)$ ("the intrinsic distance").

The Sierpinski
Gasket
Dimensions
Generalized
Sierpinski carpets
Percolation
Euclidean grids
The IIC
The conjecture

- $d=2$

Kesten (1986) showed that random walk on the IIC of \mathbb{Z}^{2} is subdiffusive in the sense that $\mathbb{E}|R(t)| \leq t^{1 / 2-e p s}$. Note that this is not subdiffusive in the same sense as above because we measure distance by $|x|$ ("the extrinsic distance") rather than by $d(0, x)$ ("the intrinsic distance").
It is known that $\beta_{\text {ext }}$ (if it exists) is between $2 \frac{31}{48}$ and $3 \frac{7}{48}$. This uses SLE theory. Even physicists do not have a good guess what is the correct value.

The Sierpinski
Gasket
Dimensions
Generalized
Sierpinski carpets

Euclidean grids
The IIC
The conjecture
The proof
critical exponents

- $d=2$

Kesten (1986) showed that random walk on the IIC of \mathbb{Z}^{2} is subdiffusive in the sense that $\mathbb{E}|R(t)| \leq t^{1 / 2-e p s}$. Note that this is not subdiffusive in the same sense as above because we measure distance by $|x|$ ("the extrinsic distance") rather than by $d(0, x)$ ("the intrinsic distance").
It is known that $\beta_{\text {ext }}$ (if it exists) is between $2 \frac{31}{48}$ and $3 \frac{7}{48}$. This uses SLE theory. Even physicists do not have a good guess what is the correct value.

- Tree

Kesten (1986) showed that random walk on the IIC of a regular tree has $\beta=3, d_{f}=2$ and $d_{s}=\frac{4}{3}$.

The Sierpinski
Gasket
Dimensions
Generalized
Sierpinski carpets

Euclidean grids
The IIC
The conjecture
The proof
critical exponents

At last,

Conjecture (Alexander \& Orbach, 1982)

For every $d>1$, the IIC exhibits $d_{s}=\frac{4}{3}$.

Graphical fractals

The Sierpinski

Gasket

Dimensions
Generalized
Sierpinski carpets
Percolation
Euclidean grids
The IIC
The conjecture
The proof
critical exponents

At last,

Conjecture (Alexander \& Orbach, 1982)
For every $d>1$, the IIC exhibits $d_{s}=\frac{4}{3}$.
For $d<6$ this was based on rough correspondance with numerical results, and better simulations "disproved" it.

The Sierpinski
Gasket
Dimensions
Generalized
Sierpinski carpets

Percolation

Euclidean grids
The IIC
The conjecture
The proof
critical exponents

At last,

Conjecture (Alexander \& Orbach, 1982)

For every $d>1$, the IIC exhibits $d_{s}=\frac{4}{3}$.
For $d<6$ this was based on rough correspondance with numerical results, and better simulations "disproved" it.

For $d \geq 6$ this was based on various conjectures that were considered proven in the physics literature. Hence this was also considered to be a proven fact. In the mathematical community this became known as the Alexander-Orbach conjecture.

The Sierpinski
Gasket
Dimensions
Generalized
Sierpinski carpets

Euclidean grids
The IIC
The conjecture

At last,

Conjecture (Alexander \& Orbach, 1982)

For every $d>1$, the IIC exhibits $d_{s}=\frac{4}{3}$.
For $d<6$ this was based on rough correspondance with numerical results, and better simulations "disproved" it.

For $d \geq 6$ this was based on various conjectures that were considered proven in the physics literature. Hence this was also considered to be a proven fact. In the mathematical community this became known as the Alexander-Orbach conjecture.
We prove it under the same conditions of Hara \& Slade i.e. d sufficiently large or $d>6$ and a sufficiently spread-out lattice.

The Sierpinski
Gasket
Dimensions
Generalized

Electric resistance

- Let G be a finite connected graph, and let x and y be vertices of G. consider G as an electric network, where every vertex of G is a node, and every edge is a 1 -ohm resistor. Denote the effective resistance between x and y by $R_{\text {eff }}(x, y)$.

Electric resistance

- Let G be a finite connected graph, and let x and y be vertices of G. consider G as an electric network, where every vertex of G is a node, and every edge is a 1 -ohm resistor. Denote the effective resistance between x and y by $R_{\text {eff }}(x, y)$.
- One way to connect random walk properties to the resistance is the commute time identity. It states that

$$
\operatorname{Hit}(x, y)+\operatorname{Hit}(y, x)=2 R_{\mathrm{eff}}(x, y) \cdot|E(G)|
$$

where $\operatorname{Hit}(x, y)$ is the expected time a random walker starting from x will first visit ("hit") y.
We use this for G being a ball $B(0, r)$ in the IIC, with the entire boundary $\partial B(0, r)$ identified to one point, which we call ∂. If we knew that $|E(G)| \approx r^{2}$ and $R_{\text {eff }}(0, \partial) \approx r$ we would get that

$$
\operatorname{Hit}(0, \partial)+\operatorname{Hit}(\partial, 0) \approx r^{3}
$$

The Sierpinski
Gasket
Dimensions
Generalized
Sierpinski carpets

Euclidean grids
The IIC
The conjecture
The proof
critical exponents

Electric resistance cont.

$$
\operatorname{Hit}(0, \partial)+\operatorname{Hit}(\partial, 0) \approx r^{3}
$$

immediately gives the bound $\operatorname{Hit}(0, \partial B(0, r)) \leq C r^{3}$. The bound in the other direction uses that the graph is strongly recurrent. This also follows from the resistance estimate. Hence $\beta=3$ would follow if we could prove that

$$
|B(0, r)| \approx r^{2} \quad R_{\mathrm{eff}}(0, \partial B(0, r)) \approx r
$$

The Sierpinski

Gasket

(Barlow, Járai, Kumagai \& Slade, 2008).

Electric resistance cont.

$$
\operatorname{Hit}(0, \partial)+\operatorname{Hit}(\partial, 0) \approx r^{3}
$$

immediately gives the bound $\operatorname{Hit}(0, \partial B(0, r)) \leq C r^{3}$. The bound in the other direction uses that the graph is strongly recurrent. This also follows from the resistance estimate. Hence $\beta=3$ would follow if we could prove that

$$
|B(0, r)| \approx r^{2} \quad R_{\mathrm{eff}}(0, \partial B(0, r)) \approx r
$$

(Barlow, Járai, Kumagai \& Slade, 2008).
The estimate of the resistance would follow if we could show that there exists \geq cr pivotal edges, i.e. edges whose removal would disconnect 0 from $\partial B(0, r)$. Which will follow, more-or-less, if we show that

$$
\mathbb{P}(0 \leftrightarrow \partial B(0, r)) \approx \frac{1}{r}
$$

(Nachmias \& Peres, 2008)

Volume growth exponent

- On a tree,

$$
\mathbb{E}(\partial B(0,2 r))=(\mathbb{E}(\partial B(0, r)))^{2}
$$

Alexander-
Orbach

Graphical fractals
The Sierpinski
Gasket

Dimensions

Generalized
Sierpinski carpets
Percolation
Euclidean grids
The IIC
The conjecture

The proof

critical exponents

Volume growth exponent

- On a tree,

$$
\mathbb{E}(\partial B(0,2 r))=(\mathbb{E}(\partial B(0, r)))^{2}
$$

- We would like to show something similar for \mathbb{Z}^{d}, but there are local interactions so the best we can hope for is

$$
\mathbb{E}(\partial B(0,2 r)) \geq c(\mathbb{E}(\partial B(0, r)))^{2} .
$$

Volume growth exponent

- On a tree,

$$
\mathbb{E}(\partial B(0,2 r))=(\mathbb{E}(\partial B(0, r)))^{2}
$$

- We would like to show something similar for \mathbb{Z}^{d}, but there are local interactions so the best we can hope for is

$$
\begin{equation*}
\mathbb{E}(\partial B(0,2 r)) \geq c(\mathbb{E}(\partial B(0, r)))^{2} . \tag{*}
\end{equation*}
$$

- If we could show that, we would be fine, since the minute $\mathbb{E}(\partial B(0, r))$ crosses some constant, it will start exploding.

Volume growth exponent

- On a tree,

$$
\mathbb{E}(\partial B(0,2 r))=(\mathbb{E}(\partial B(0, r)))^{2}
$$

- We would like to show something similar for \mathbb{Z}^{d}, but there are local interactions so the best we can hope for is

$$
\begin{equation*}
\mathbb{E}(\partial B(0,2 r)) \geq c(\mathbb{E}(\partial B(0, r)))^{2} \tag{*}
\end{equation*}
$$

- If we could show that, we would be fine, since the minute $\mathbb{E}(\partial B(0, r))$ crosses some constant, it will start exploding.
- We could not show (*) either, because the boundary of $B(0, r)$ is too fragile. We instead showed

$$
\mathbb{E}(B(0,2 r)) \geq \frac{c}{r}(\mathbb{E}(B(0, r)))^{2} .
$$

which works just as well.

Resistance exponent

- A crucial point is the determination of δ by Barsky \& Aizenman (1991),

$$
\mathbb{P}\left(\left|\mathcal{C}_{0}\right|>n\right) \approx \frac{C}{\sqrt{n}}
$$

The Sierpinski
Gasket
Dimensions
Generalized
Sierpinski carpets
Percolation

Euclidean grids

The IIC
The conjecture

Resistance exponent

- A crucial point is the determination of δ by Barsky \& Aizenman (1991),

$$
\mathbb{P}\left(\left|\mathcal{C}_{0}\right|>n\right) \approx \frac{C}{\sqrt{n}}
$$

- This means we can restrict our attention to the case that $|B(0, r)| \leq C r^{2}$, and hence for some $j \in\left[\frac{1}{3} r, \frac{2}{3} r\right]$, $|\partial B(0, j)| \leq C r$.

The Sierpinski
Gasket
Dimensions
Generalized
Sierpinski carpets

Percolation

Euclidean grids
The IIC
The conjecture
critical exponents

Resistance exponent

- A crucial point is the determination of δ by Barsky \& Aizenman (1991),

$$
\mathbb{P}\left(\left|\mathcal{C}_{0}\right|>n\right) \approx \frac{C}{\sqrt{n}}
$$

- This means we can restrict our attention to the case that $|B(0, r)| \leq C r^{2}$, and hence for some $j \in\left[\frac{1}{3} r, \frac{2}{3} r\right]$, $|\partial B(0, j)| \leq C r$.
- Since, to get to distance r, we need to survive to $\frac{1}{3} r$, and then one of the $\leq C r$ vertices in $\partial B(0, j)$ must survive another $\frac{1}{3} r$, we get (roughly)

$$
\mathbb{P}(0 \leftrightarrow \partial B(0,3 r)) \leq \frac{C}{r}+C r \cdot(\mathbb{P}(0 \leftrightarrow \partial B(0, r)))^{2}
$$

where the first term comes from Barsky \& Aizenman.

The Sierpinski

Gasket

Dimensions
Generalized
Sierpinski carpets

Euclidean grids
The IIC

Resistance exponent

- A crucial point is the determination of δ by Barsky \& Aizenman (1991),

$$
\mathbb{P}\left(\left|\mathcal{C}_{0}\right|>n\right) \approx \frac{C}{\sqrt{n}}
$$

- This means we can restrict our attention to the case that $|B(0, r)| \leq C r^{2}$, and hence for some $j \in\left[\frac{1}{3} r, \frac{2}{3} r\right]$, $|\partial B(0, j)| \leq C r$.
- Since, to get to distance r, we need to survive to $\frac{1}{3} r$, and then one of the $\leq C r$ vertices in $\partial B(0, j)$ must survive another $\frac{1}{3} r$, we get (roughly)

$$
\mathbb{P}(0 \leftrightarrow \partial B(0,3 r)) \leq \frac{C}{r}+C r \cdot(\mathbb{P}(0 \leftrightarrow \partial B(0, r)))^{2}
$$

where the first term comes from Barsky \& Aizenman.

- An induction then shows (roughly) the required estimate.

Thank you

Graphical fractals

The Sierpinski
Gasket
Dimensions
Generalized
Sierpinski carpets
Percolation
Euclidean grids
The IIC
The conjecture

The proof

critical exponents

