Artem Sapozhnikov

Invasion percolation in 2D

Artem Sapozhnikov (joint work with Michael Damron and Bálint Vágvölgyi) Artem Sapozhnikov Questions

Questions

Question 1:

Let \hat{D}_k be the *diameter* of the k-th pond.

$$\mathbb{P}(\hat{D}_k \geq n) - ?$$

Questions

Question 1:

Let \hat{D}_k be the *diameter* of the k-th pond.

$$\mathbb{P}(\hat{D}_k \geq n) - ?$$

Question 2:

Let $|\hat{V}_k|$ be the *volume* of the *k*-th pond.

$$\mathbb{P}(|\hat{V}_k| \geq n) - ?$$

Questions

Question 1:

Let \hat{D}_k be the *diameter* of the *k*-th pond.

$$\mathbb{P}(\hat{D}_k \geq n) - ?$$

Question 2:

Let $|\hat{V}_k|$ be the *volume* of the *k*-th pond.

$$\mathbb{P}(|\hat{V}_k| \geq n) - ?$$

Question 3:

What can we say about the distribution of S?

Observations

• Let $p>p_c$. There exists an infinite p-open cluster \mathcal{C}_p with probability 1. If

$$S_n \cap C_p \neq \emptyset$$

for some n, then

$$\mathcal{S} \setminus \mathcal{S}_n \subset \mathcal{C}_p$$
;

• For any $p > p_c$,

$$\mathcal{S} \cap \mathcal{C}_p \neq \emptyset$$
.

Results

Let \hat{D}_k be the *diameter* of the k-th pond.

Let \hat{D}_k be the *diameter* of the *k*-th pond.

Theorem

For any $k \geq 1$, there exist C_1 and C_2 such that

$$\mathbb{P}(\hat{D}_k \geq n) \geq C_1(\log n)^{k-1}\mathbb{P}_{p_c}(diam\ C(0) \geq n)$$

and

$$\mathbb{P}(\hat{D}_k \geq n) \leq C_2(\log n)^{k-1}\mathbb{P}_{p_c}(diam \ C(0) \geq n).$$

Results

Let $|\hat{V}_k|$ be the *volume* of the *k*-th pond.

Let $|\hat{V}_k|$ be the *volume* of the *k*-th pond.

Theorem

For any $k \ge 1$, there exist C_3 and C_4 such that

$$\mathbb{P}(|\hat{V}_k| \geq n) \geq C_3(\log n)^{k-1}\mathbb{P}_{p_c}(|C(0)| \geq n)$$

and

$$\mathbb{P}(|\hat{V}_k| \geq n) \leq C_4 (\log n)^{k-1} \mathbb{P}_{p_c}(|C(0)| \geq n).$$

Incipient infinite cluster

The limit

$$\nu(E) = \lim_{p \downarrow p_c} \mathbb{P}_p(E \mid |C(0)| = \infty)$$

exists for any event E that depends on the state of finitely many edges;

Incipient infinite cluster

• The limit

$$\nu(E) = \lim_{p \downarrow p_c} \mathbb{P}_p(E \mid |C(0)| = \infty)$$

exists for any event E that depends on the state of finitely many edges;

• The unique extension of ν to the probability measure on the configurations of open and closed edges is called the *incipient infinite cluster*;

Incipient infinite cluster

The limit

$$\nu(E) = \lim_{p \downarrow p_c} \mathbb{P}_p(E \mid |C(0)| = \infty)$$

exists for any event E that depends on the state of finitely many edges;

- The unique extension of ν to the probability measure on the configurations of open and closed edges is called the incipient infinite cluster;
- Note that $\nu(|C(0)| = \infty) = 1$.

Recall the definition of the invasion percolation cluster ${\cal S}$.

Theorem (Jarai, '02)

For any finite subset of edges K and $x \in \mathbb{Z}^2$,

$$\lim_{|x|\to\infty} \mathbb{P}(x+\mathcal{K}\subset\mathcal{S}\mid x\in\mathcal{S}) = \nu(\mathcal{K}\subset\mathcal{C}(0)).$$

Recall the definition of the invasion percolation cluster \mathcal{S} .

Theorem (Jarai, '02)

For any finite subset of edges K and $x \in \mathbb{Z}^2$,

$$\lim_{|x|\to\infty} \mathbb{P}(x+\mathcal{K}\subset\mathcal{S}\mid x\in\mathcal{S}) = \nu(\mathcal{K}\subset\mathcal{C}(0)).$$

The theorem says that asymptotically the distribution of invaded edges near $x \in \mathcal{S}$ is given by the IIC measure.

Recall the definition of the invasion percolation cluster \mathcal{S} .

Theorem (Jarai, '02)

For any finite subset of edges K and $x \in \mathbb{Z}^2$,

$$\lim_{|x|\to\infty} \mathbb{P}(x+\mathcal{K}\subset\mathcal{S}\mid x\in\mathcal{S}) = \nu(\mathcal{K}\subset\mathcal{C}(0)).$$

The theorem says that asymptotically the distribution of invaded edges near $x \in \mathcal{S}$ is given by the IIC measure.

Theorem

The laws of the invasion percolation cluster and the incipient infinite cluster are mutually singular.