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Problem

Consider a random locally finite upper bounded point configuration
x1 ≥ x2 ≥ . . . on R (later on Rd)

Add to each point an increment from an i.i.d. sequence (πn)n≥1

Rearrange the points in descending order

In other words:

(xn)n≥1 7→ (xn + πn)↓ (I.1)

What are the quasi-stationary measures of such evolutions (i.e. measures
on configurations for which the distribution of the gaps is invariant)?

Interesting for example in the context of the SK model of spin glasses
(xn’s are interpreted as energy levels of particles)
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Previously known results

Ruzmaikina-Aizenman Theorem. If πn have a density and a finite
moment generating function, then quasi-stationary states are
superpositions of Poisson point processes with densities of the type
ae−axdx , a > 0.

Arguin-Aizenman Theorem. If (πn)n≥1 is centered Gaussian with
covariance matrix Q, Q has finitely many different entries and (xn)n≥1

satisfies a growth condition, then indecomposable robustly quasi-stationary
measures under a one parameter family of evolutions driven by (πn)n≥1 are
superpositions of Ruelle Probability Cascades.

Here we are interested in the i.i.d. case, but with general increments (⇒
e.g. lattice type increments) and d > 1.
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Key issues

1. How to define a total order on Rd which can be used to define
quasi-stationarity and for which large deviations arguments work?

Want

level sets of � to be infinite rectangles up to boundary

x � y , y � x ⇒ x = y (⇒ unique leader w.r.t. �)

Possible solution:

Define a line l ⊂ Rd and p : Rd → l the ”projection” to the closest point
which is not ≥ to the projected point, set x � y if p(x) ≥ p(y), for x , y
with p(x) = p(y) use inductive construction (in addition l must also
satisfy a small technical property in the lattice case)
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2. How to treat the case of lattice type increments?

For the Poissonization Theorem (relating the quasi-stationary measure µ
to Poisson point processes) need a unique leader of the process, so we
assume that µ is simple (no two particles are at the same point).
Otherwise it is not known if the quasi-stationary states are of Poisson type.

For our large deviations arguments we use Bahadur-Rao in d = 1 (holds
for lattice and non-lattice r.v.!), for d > 1 we prove an extension of
Bahadur-Rao.
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Main result

Theorem.

Let the πn have an everywhere finite Laplace transform and if d > 1 let
the increments have a density or be of lattice type.

Then every simple measure µ which is quasi-stationary for the evolution
with i.i.d. increments is a superposition of Poisson point processes.

Moreover, the intensity measures λ of the Poisson point processes are
exactly the solutions of Choquet-Deny equations λ ∗ πa = λ where π is the
distribution of the increments and πa is the measure resulting from π by a
shift by a.
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Sketch of the proof

1. Poissonization Theorem. Let µ be a simple quasi-stationary measure
of the evolution above, {FN}N≥1 be the family of functions defined by

FN(x) =
∑
m≥1

Pπ(xm + π1 + · · ·+ πN ≥ x)

where (xn)n≥1 is a fixed starting configuration of the particles. Then for
any non-negative continuous function with compact support f ∈ C+

c (R) it
holds

G̃µ(f ) = lim
N→∞

∫
dµ ĜFN

(f ). (V.2)

Here, G̃µ denotes the modified probability generating functional of µ given
by
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G̃µ(f ) = Eµ

[
exp

(
−
∑
n

f (x1 − xn)

)]
(V.3)

and ĜFN
denotes the modified probability generating functional of the

Poisson point process on R with intensity measure λN uniquely determined
by

λN([a, b)) = FN(a)− FN(b).

2. µ is a superposition of Poisson point processes. Need in some
sense ”tightness” of (λN)N≥1. To prove this we prove and use a
generalized version of the Bahadur-Rao Theorem:

Multidimensional Bahadur-Rao Theorem. Let (Yn)n≥1 be an i.i.d.
sequence of centered Rd -valued random variables having an everywhere
finite moment generating function and set
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SN ≡
∑N

n=1 Yn. Then in case that d = 1 and the Yn are non-lattice or
d > 1 and the Yn have a density we have for all x ∈ Rd and Rd 3 q ≥ 0:

P(SN ≥ x + qN)

P(SN ≥ qN)
∼ exp(−η(ν(q)) · x) (V.4)

uniformly in q where ∼ means that the quotient of the two expressions
tends to 1, η = η(q) is the unique solution of

γ(q) = η · q − Λ(η), (V.5)

Λ is the logarithmic moment generating function, γ is the
Fenchel-Legendre transform and ν(q) is the minimizer of γ over the set
{y ∈ Rd |y ≥ q}. In case that the Yn are lattice with values in AZd + b,
equation (V.4) holds for all x ∈ AZd and all lattice points q ≥ 0 again
uniformly in q where A is a real d × d matrix and b ∈ Rd .
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3. Computation of the Poisson intensities.

Prove that

λ 7→ λ ∗ π (V.6)

makes the tail of λ ”steeper” with ”equal steepness” iff λ ∗ πa = λ for an
a ∈ R. Solve the Choquet-Deny equation with the Choquet-Deny
Theorem.

Mykhaylo Shkolnikov (Department of Mathematics, Stanford University)Competing Particle Systems Evolving by i.i.d. Increments
June 26, 2008Joint work with A. Dembo 1

/ 1



Arguin, L.-P., Aizenman, M. (2007), “On the structure of
quasi-stationary cometing particles systems”, arxiv: 0709.2901v1
[math.PR].

Deny, J. (1960), “Sur l’equation de convolution µ = µ ∗ σ”, Seminaire
Brelot-Choquet-Deny. Theorie du potentiel, Vol. 4 (1959-60), No. 5,
pp. 1-11.

Iltis, M. (1995), “Sharp Asymptotics of Large Deviations in Rd”,
Journal of Theoretical Probability, Vol. 8, No. 3, pp. 501-522.

Ruzmaikina, A., Aizenman, M. (2005), “Characterization of invariant
measures at the leading edge for competing particle systems”, The
Annals of Probability, Vol. 33, No. 1, pp. 82-113.

Mykhaylo Shkolnikov (Department of Mathematics, Stanford University)Competing Particle Systems Evolving by i.i.d. Increments
June 26, 2008Joint work with A. Dembo 1

/ 1


