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Introduction

We consider a random walk in random environment where the
environment is given by a subcritical percolation. The quenched
process is a continuous random walk in Zd subject to a drift and
attraction to large clusters of the environment.
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Environment

We consider a subcritical i.i.d. site percolation ω on Zd :
Fix p < pc(d) and a variable ω ∈ Ω = {0, 1}Zd

with law

P = Ber(p)⊗Zd
.

Notation : Cx will denote the size of the cluster of x (x ∈ Zd)

Exponential decay of the cluster size

There exists ξ(p, d) > 0 such that

−1

n
ln P(C0 > n)→ ξ > 0 (n→∞)

François Simenhaus – LPMA Paris VII Random walk delayed on percolation clusters



Model
Related models

Results
Conclusion

The quenched law

Fix an environment ω and a direction ` ∈ Sd−1. We need two
parameters :

λ ≥ 0 for the strength of the drift

β ≥ 0 for the strength of the attraction by the clusters

We now define the continuous time Markov Chain (Yt)t≥0 with
law Pω by assigning its skeleton and jump rates.

Skeleton

The skeleton (Xn)n≥0 is the drifted random walk on Zd with transi-
tions

P̃(Xn+1 = x + e|Xn = x) =
eλ`·e∑
|e′|=1 eλ`·e′

, |e| = 1.
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The quenched law

Notice that the skeleton is independent from the environment
ω.

d(λ) will denote the drift of (Xn)n≥0.

Jump rates

The jump rate at site x ∈ Zd is e−βCx .

The waiting time at site x are i.i.d. exponential variables with
mean eβCx .
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Clock Process

Consider a family of i.i.d. exponential variables (εi )i∈N with mean 1
(note Q the law of this family) and define the clock process as :

Sn =
n−1∑
i=0

εie
βCXi .

We now consider the process

Yt = XS−1(t), t ≥ 0,

and define Pω as the law of (Yt)t≥0 under P̃ ⊗ Q.
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Properties Pω

Pω is reversible and admits the reversible measure,

µω(x) = e2λ`·x+βCx , x ∈ Zd

We will also use the annealed law P :

P = P× Pω.
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The Bouchaud Trap Model

This model can be seen as a BTM on Zd (Ben Arous-Cerny)

The skeleton is still a simple random walk, but now possibly
drifted.

The (τx)x∈Zd are not i.i.d. as τx = eβCx .
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Popov and Vachkovskaia Model

S.Popov et M.Vachkovskaia studied the discrete time walk
attracted by clusters with transitions,

P(Xn+1 = x + e|Xn = x) =
eβCx+e∑
|e′|=1 eβCx+e′

.

µω(x) = eβCx , x ∈ Zd , is also a reversible measure for this dynamic
...but not for the same reasons.
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Law of large numbers

Theorem : Law of large Numbers

For every λ ≥ 0 and β ≥ 0,

lim
t→∞

Yt

t
=

d(λ)

EeβC0

Main tool of the proof : the environment seen from the particle is
an ergodic Markov chain under the annealed law.
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Sub-diffusive case

Theorem : Subdiffusive case : β ≥ ξ
For every d ≥ 1 and λ > 0,

lim
t→∞

ln |Yt |
ln t

=
ξ

β
, P − p.s.

If λ = 0 and d ≥ 2,

lim sup
t→∞

ln |Yt |
ln t

=
ξ

2β
, P − p.s.

If λ = 0 and d = 1,

lim sup
t→∞

ln |Yt |
ln t

=
1

2

(
β

2ξ
+

1

2

)−1

, P − p.s.
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Quenched Invariance principle

Theorem : Quenched Invariance principle

If λ = 0 and E(eβC ) <∞, then P− p.s.,

(ε1/2Yε−1t)t≥0 ⇒ (Bt)t≥0

Proof :

(Yt)t≥0 is a martingale under the quenched law.

Ergodic theorem gives the existence of a limit for the bracket
of (ε1/2Yε−1t)t≥0.
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Conclusions

Convergence in law as for the BTM.

Study of the model of Popov and Vachkovkäıa with a drift.

Study of other Markovian dynamics admitting µω as reversible
measure.
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