Fortuin-Kasteleyn random cluster model at criticality

Collections of blue edges, clusters are max subgraphs connected by blue edges Dobrushin-type boundary conditions: arc $b a$ wired, arc $a b$
Prob $\asymp\left(\frac{1-\boldsymbol{x}}{\boldsymbol{x}}\right)^{\text {\# blue edges }} \boldsymbol{q}$ \# clusters

For $x=x_{c}(q)=1 /(\sqrt{q}+1)$ self-dual
Random cluster representation of q-state Potts model: $q=\mathbf{2}$ FK Ising model, $q=1$ bond percolation on the square lattice, $q=0$ uniform spanning tree.
Conjecture [Rohde-Schramm,...]. Interface has conformally invariant SLE as a scaling limit for $q \in[0,4]$ and $x=x_{c}(q)$.

Fortuin-Kasteleyn random cluster model at criticality: loop representation

Draw loops on the medial lattice, separating clusters from
Dobrushin-type boundary conditions lead to an interface $\gamma: a \leftrightarrow b$
Prob $\asymp\left(\frac{1-\boldsymbol{x}}{\boldsymbol{x}}\right)^{\text {\# blue edges }} \boldsymbol{q}$ \# clusters

For $x=x_{c}(q)=1 /(\sqrt{q}+1)$ self-dual and $\operatorname{Prob} \asymp(\sqrt{\boldsymbol{q}})^{\# \text { loops }}$
Random cluster representation of q-state Potts model: $q=2$ FK Ising model, $q=1$ bond percolation on the square lattice, $q=0$ uniform spanning tree.
Conjecture [Rohde-Schramm,...]. Interface has conformally invariant SLE as a scaling limit for $q \in[0,4]$ and $x=x_{c}(q)$.

Fortuin-Kasteleyn random cluster model at criticality: loop representation

Dense loop collections on the square lattice
Dobrushin-type boundary conditions: besides loops an interface $\gamma: a \leftrightarrow b$

For self-dual x (conjecturally critical) Prob $\asymp(\sqrt{q})^{\# \text { loops }}$
Random cluster representation of q-state Potts model: $q=2$ FK Ising model, $q=1$ bond percolation on the square lattice, $q=0$ uniform spanning tree.
Conjecture [Rohde-Schramm,...]. Interface has conformally invariant SLE as a scaling limit for $q \in[0,4]$.

FK Ising preholomorphic observable: $F(z):=\frac{1}{\sqrt{2 \delta}} \mathbb{E} \chi_{z \in \gamma} \cdot \mathcal{W}$

- Fermionic weight $\mathcal{W}:=\exp \left(-i \frac{1}{2}\right.$ winding $\left.(\gamma, b \rightarrow z) / 2\right)$ weight \mathcal{W}

Note: through a given edge interface always goes in the same direction, so complex weight is uniquely defined up to sign.
Theorem. For FK Ising when lattice mesh $\delta \rightarrow 0$

$$
F(z) \rightrightarrows \sqrt{\Phi^{\prime}(z)} \text { inside } \Omega
$$

where Φ maps conformally Ω to a horizontal width 1 strip, $a, b \mapsto$ ends. The limit is conformally covariant.

Where complex weights come from? [cf. Baxter]
Set $2 \cos (2 \pi k)=\sqrt{q}$. Orient loops \Leftrightarrow height function changing by ± 1 whenever crossing a loop (think of a geographic map with contour lines) New \mathbb{C} partition function (loca!!): $Z^{\mathbb{C}}=\sum \prod_{\text {sites }} \exp (i$ winding $\cdot k)$

Forgetting orientation projects onto the original model: $\operatorname{Proj}\left(Z^{\mathbb{C}}\right)=Z$

Orient interface $b \rightarrow z$ and $a \rightarrow z \Leftrightarrow+2$ monodromy at z Can rewrite our observable as $\boldsymbol{F}(\boldsymbol{z})=Z_{+2}$ monodromy at z Note: being attached to $\partial \Omega, \gamma$ is weighted differently from loops

Proof: discrete analyticity by local rearrangement

If $a-b$ interface passes through x, changing connections at x creates two configurations. Additional loop on the right \Rightarrow weights differ by a factor of $\sqrt{q}=\sqrt{2}$

Proof: discrete relation $F(N)+F(S)=F(E)+F(W)$

$X \lambda^{2}$	$F(N)$	0
X	$F(S)$	$X \sqrt{2}$
$X \lambda$	$F(W)$	$X \lambda \sqrt{2}$
$X \bar{\lambda}$	$F(E)$	0

$\lambda=\exp (-i \pi / 4)$ is the weight per $\pi / 2$ turn. Two configurations together contribute equally to both sides of the relation:

$$
\begin{align*}
& \quad X \lambda^{2}+X+X \sqrt{2}=X \bar{\lambda}+X \lambda+X \lambda \sqrt{2} \\
& i+1+\sqrt{2}=\left(\frac{1}{\sqrt{2}}-\frac{i}{\sqrt{2}}\right)+\left(\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}\right)+\left(\frac{1}{\sqrt{2}}-\frac{i}{\sqrt{2}}\right) \sqrt{2}
\end{align*}
$$

Proof: $F(N)+F(S)=F(E)+F(W) \Rightarrow s-H o l$ Interface always passes an edge always in the same direction, so complex weight is uniquely defined up to sign.

For example $\mathcal{W}(S)$ is proportional to

$$
\pm \frac{1}{\sqrt{(z-S)}}= \pm \frac{1}{\sqrt{i(w-b)}}
$$

Thus $F(E) \perp F(W)$ and $F(N) \perp F(S)$ and they give the same complex number, which we denote by $F(z)$, in two orthogonal bases.

Conclusion: (same for isoradial)

$$
F(S)=\operatorname{Proj}\left(F(z), \pm \frac{1}{\sqrt{i(w-b)}}\right)=\operatorname{Proj}\left(F\left(z^{\prime}\right), \pm \frac{1}{\sqrt{i(w-b)}}\right)
$$

Proof: Riemann-(Hilbert-Privalov) boundary value problem

When z is on the boundary, winding of the interface $b \rightarrow z$ is uniquely determined, same as for $\partial \Omega$. So weight $\mathcal{W}=\tau^{-1 / 2}$.

Thus F solves the discrete version of the covariant Riemann BVP $\operatorname{Im}\left(F(z) \cdot \tau^{1 / 2}\right)=0, \quad$ where τ is the tangent to $\partial \Omega$.

Plus the interface always passes through a and b, winding is unique, so $|F(a)|=|F(b)|=1 / \sqrt{2 \delta}$.

The continuum case is solved by $F=\sqrt{\Phi^{\prime}}$, where $\Phi: \Omega \rightarrow$ infinite horizontal strip, $a, b \mapsto$ ends.

Check: on $\partial \Omega$
$\operatorname{Im} \Phi=\mathrm{const} \Rightarrow d \Phi \in \mathbb{R}_{+} \Rightarrow \Phi^{\prime} \cdot d z \in \mathbb{R}_{+} \Rightarrow \operatorname{Im}\left(\sqrt{\Phi^{\prime}} \cdot \tau^{1 / 2}\right)=0$

