Fortuin-Kasteleyn random cluster model at criticality

Collections of blue edges, clusters are max subgraphs connected by blue edges Dobrushin-type boundary conditions: arc ba wired, arc ab dual-wired $\operatorname{Prob} \approx \left(\frac{1-x}{x}\right)^{\# \text{ blue edges}} q^{\# \text{ clusters}}$ For $x = x_c(q) = 1/(\sqrt{q} + 1)$ self-dual

Random cluster representation of q-state Potts model: q = 2 FK Ising model, q = 1 bond percolation on the square lattice, q = 0 uniform spanning tree. **Conjecture** [Rohde-Schramm,...]. Interface has conformally invariant SLE as a scaling limit for $q \in [0, 4]$ and $x = x_c(q)$.

Fortuin-Kasteleyn random cluster model at criticality: loop representation a

Draw loops on the medial lattice, separating clusters from dual clusters Dobrushin-type boundary conditions lead to an interface $\gamma : a \leftrightarrow b$ $\operatorname{Prob} \asymp \left(\frac{1-x}{x}\right)^{\# \text{ blue edges}} q^{\# \text{ clusters}}$ For $x = x_c(q) = 1/(\sqrt{q}+1)$ self-dual and $\operatorname{Prob} \asymp \left(\sqrt{q}\right)^{\# \text{ loops}}$

Random cluster representation of q-state Potts model: q = 2 FK Ising model, q = 1 bond percolation on the square lattice, q = 0 uniform spanning tree. **Conjecture** [Rohde-Schramm,...]. Interface has conformally invariant SLE as a scaling limit for $q \in [0, 4]$ and $x = x_c(q)$.

Fortuin-Kasteleyn random cluster model at criticality: loop representation

Dense loop collections on the square lattice Dobrushin-type boundary conditions: besides loops an interface $\gamma: a \leftrightarrow b$

For self-dual x (conjecturally critical) $\operatorname{Prob} \asymp (\sqrt{q})^{\# \operatorname{loops}}$

Random cluster representation of q-state Potts model: q = 2 FK Ising model, q = 1 bond percolation on the square lattice, q = 0 uniform spanning tree. **Conjecture** [Rohde-Schramm,...]. Interface has conformally invariant SLE as a scaling limit for $q \in [0, 4]$.

FK Ising preholomorphic observable: $F(z) := \frac{1}{\sqrt{2\delta}} \mathbb{E} \chi_{z \in \gamma} \cdot \mathcal{W}$

• Fermionic weight $\mathcal{W} := \exp\left(-i \frac{1}{2} \operatorname{winding}(\gamma, b \to z)/2\right)$

Note: through a given edge interface always goes in the same direction, so complex weight is uniquely defined up to sign.

Theorem. For FK Ising when lattice mesh $\delta \to 0$ $F(z) \Rightarrow \sqrt{\Phi'(z)}$ inside Ω ,

where Φ maps conformally Ω to a horizontal width 1 strip, $a, b \mapsto \text{ends.}$ The limit is conformally covariant.

Where complex weights come from? [cf. Baxter]

Set $2\cos(2\pi k) = \sqrt{q}$. Orient loops \Leftrightarrow height function changing by ± 1 whenever crossing a loop (think of a geographic map with contour lines) New \mathbb{C} partition function (local!):

 $Z^{\mathbb{C}} = \sum \prod_{ ext{sites}} \exp(i ext{ winding } \cdot k)$

Forgetting orientation projects onto the original model: $\operatorname{Proj}(Z^{\mathbb{C}}) = Z$ $\frac{e^{(i2\pi k)} + e^{(-i2\pi k)}}{\sqrt{q}}$

Orient interface $b \to z$ and $a \to z \Leftrightarrow +2$ monodromy at zCan rewrite our observable as $F(z) = Z_{+2 \text{ monodromy at } z}$ Note: being attached to $\partial\Omega$, γ is weighted differently from loops

Proof: discrete analyticity by local rearrangement

If a-b interface passes through x,

changing connections at x creates two configurations.

Additional loop on the right \Rightarrow weights differ by a factor of $\sqrt{q} = \sqrt{2}$

Proof: discrete relation F(N) + F(S) = F(E) + F(W)

 $\lambda = \exp(-i\pi/4)$ is the weight per $\pi/2$ turn. Two configurations together contribute equally to both sides of the relation:

$$X\lambda^2 + X + X\sqrt{2} = X\overline{\lambda} + X\lambda + X\lambda\sqrt{2}$$
$$i + 1 + \sqrt{2} = \left(\frac{1}{\sqrt{2}} - \frac{i}{\sqrt{2}}\right) + \left(\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}}\right) + \left(\frac{1}{\sqrt{2}} - \frac{i}{\sqrt{2}}\right)\sqrt{2} \quad \Box$$

Proof: $F(N) + F(S) = F(E) + F(W) \implies$ s-Hol

Interface always passes an edge always in the same direction, so complex weight is uniquely defined up to sign.

For example
$$\mathcal{W}(S)$$
 is proportional to $\pm \frac{1}{\sqrt{(z-S)}} = \pm \frac{1}{\sqrt{i(w-b)}}$

Thus $F(E) \perp F(W)$ and $F(N) \perp F(S)$ and they give the same complex number, which we denote by F(z), in two orthogonal bases.

Conclusion: (same for isoradial) $F(S) = \operatorname{Proj}\left(F(z), \pm \frac{1}{\sqrt{i(w-b)}}\right) = \operatorname{Proj}\left(F(z'), \pm \frac{1}{\sqrt{i(w-b)}}\right)$

Proof: Riemann-(Hilbert-Privalov) boundary value problem

When z is on the boundary, winding of the interface $b \to z$ is uniquely determined, same as for $\partial \Omega$. So weight $\mathcal{W} = \tau^{-1/2}$.

Thus F solves the discrete version of the covariant Riemann BVP Im $(F(z) \cdot \tau^{1/2}) = 0$, where τ is the tangent to $\partial \Omega$.

Plus the interface **always** passes through a and b, winding is unique, so $|F(a)| = |F(b)| = 1/\sqrt{2\delta}$.

The continuum case is solved by $F = \sqrt{\Phi'}$, where $\Phi : \Omega \rightarrow$ infinite horizontal strip, $a, b \mapsto$ ends.

Check: on $\partial\Omega$ Im $\Phi = \text{const} \Rightarrow d\Phi \in \mathbb{R}_+ \Rightarrow \Phi' \cdot dz \in \mathbb{R}_+ \Rightarrow \text{Im}\left(\sqrt{\Phi'} \cdot \tau^{1/2}\right) = 0$