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Bernoulli bond percolation

Consider the square lattice Z2 with its set of nearest neighbour
bonds E2.

Assign uniform[0,1] random variables to each edge
independently, denoted by τ(e) for an edge e.

For a given p we say that an edge e is p-open if τ(e) ≤ p.

This model is called Bernoulli percolation with parameter p.

The same model can be obtained by declaring each edge open
with probability p and closed otherwise, independently of each
other.
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Some important results for Bernoulli percolation

Let Θ(p) = Pp(0↔∞) be the percolation function.

Let pc = inf{0 ≤ p ≤ 1 : Θ(p) > 0} be the critical probability.

For all p > pc there is a unique in�nite p-open cluster,
denoted by Cp.
pc = 1/2 and Θ(pc) = 0.

Russo, Seymour, Welsh theorem: For any k > 0 let An,k be
the event that the box [0, kn]× [0, n] contains a horizontal
open crossing and let p ≥ pc . Then there exists a constant δk ,
independent of n and p such that Pp(An,k) > δk .

Consequence: For all p ≥ pc , the origin is surrounded by
in�nitely many open circuits with probability one.
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Invasion percolation

Assign again uniform[0,1] random variables to each edge
independently, denoted by τ(e) for an edge e.

The invaded region S(v) of a vertex v is de�ned as the
increasing union of subgraphs Sn(v), where

S0(v) = {v}
Sn+1(v) is Sn(v) together with the lowest edge not in Sn(v)
but incident to some vertex in Sn

In this talk we always consider the invaded region of the origin
and we write S = S(0).
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Results for invasion percolation

For all p > pc we have that S ∩ Cp 6= ∅, since the origin is
surrounded by in�nitely many p-open circuit.

It is clear from the invasion mechanism that if Sn ∩ Cp 6= ∅ for
some n > 0 then S \ Sn ⊂ Cp
By other words: If for any p the invasion hits the in�nite
p-open cluster, it will never leave this cluster again.

If ei is the edge invaded at time i then lim supi→∞ τ(ei ) = pc .

Since there is no percolation at pc we get that
τ̂ = maxe∈E∞ τ(e) exists and is greater than pc .
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De�nition of the �rst pond

Let ê be the edge where the maximum value of τ is taken,
namely τ(ê) = τ̂ .

ê exists and it is well-de�ned with probability 1.

Suppose that ê is added to the invasion at time i + 1, then the
graph Si = V̂1 is called the �rst pond of the invasion or the
�rst pond of the origin.
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Further ponds

Assume that the �rst pond is Si1 for some i1.

Then maxei∈E∞,i>i1 τ(e) exists and greater than pc .

Let ê2 be the edge where this value is taken.

If ê2 is invaded at time i2 + 1, than the graph Si2 \ Si1 is the
second pond of the invasion.

The other ponds of the invasion can be de�ned in similar way.
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Let ê2 be the edge where this value is taken.
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