The Garden of Archimedes
 The Garden of Archimedes
 A Museum for Mathematics




  1. Straight lines and circles
  2. Conic sections
  3. Other curves

Other instruments to draw straight lines


Watt's mechanism, which because of its extreme simplicity is still in use today, solves in practice the problem of drawing a straight line, or at least a curve so near to a straight line to be practically indistinguishable in applications. After Watt, other instruments were found, certainly more complicated, that draw approximated lines; some of these can be seen and operated.

The theoretical problem still stands, however - is it possible to build an instrument that draws a true straight line, not just an approximation? A first positive answer is given by Sarrus' mechanism, in which the points on the upper plate all move along vertical lines. It is, however, a machine which is neither practical (Watt's mechanism is much simpler and more reliable) nor satisfying from the theoretical point of view, since it operates in three-dimensional space and not on the plane. Technically, this also means it takes up a lot of space.

The exact solution to the problem is given by a mechanism invented in 1864 by A. Peaucellier, based on the properties of a specific mathematical transformation: the inversion compared to a circumference. The mechanism is made of a number of rods hinged so that, whatever way they are moved, the product of the distances of the P and Q point from O is always the same. To use a more technical language, points P and Q correspond through inversion compared to a circle whose centre is O.

One of the properties of inversion is that when point P traces a circumference, its corresponding point Q also traces a circumference. Only one case provides an exception, which is what we need - when the circumference traced by P goes through the centre O, the corresponding point Q traces not a circumference, but a straight line. One then understands the role of the PR rod, whose extremity R is fixed to the table. It has nothing to do with inversion, but it ensures that point P, which now can only rotate around R, draws a circumference. If PR is equal to RO, this circumference will go through the centre O, and then the corresponding point Q will draw a rect, or, more precisely, a segment.

go back to the top of the page


 

The Garden of Archimedes
Home Page

Information

Exhibitions

Publications

Map of the site